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Abstract Population projection matrices are commonly
used by ecologists and managers to analyze the
dynamics of stage-structured populations. Building
projection matrices from data requires estimating tran-
sition rates among stages, a task that often entails esti-
mating many parameters with few data. Consequently,
large sampling variability in the estimated transition
rates increases the uncertainty in the estimated matrix
and quantities derived from it, such as the population
multiplication rate and sensitivities of matrix elements.
Here, we propose a strategy to avoid overparameterized
matrix models. This strategy involves fitting models to
the vital rates that determine matrix elements, evaluating
both these models and ones that estimate matrix ele-
ments individually with model selection via information
criteria, and averaging competing models with multi-
model averaging. We illustrate this idea with data from a
population of Silene acaulis (Caryophyllaceae), and
conduct a simulation to investigate the statistical prop-
erties of the matrices estimated in this way. The simu-
lation shows that compared with estimating matrix
elements individually, building population projection
matrices by fitting and averaging models of vital-rate
estimates can reduce the statistical error in the popula-
tion projection matrix and quantities derived from it.

Keywords Information criteria Æ Model selection Æ
Multimodel averaging Æ Vital rates

Introduction

Population projection matrices (PPMs) are popular tools
among ecologists and wildlife managers for modeling
and analyzing population dynamics (Tuljapurkar and
Caswell 1997; Caswell 2001; Morris and Doak 2002; and
references therein). Among many other applications,
PPMs have been used to assess conservation strategies
for northern spotted owl (Lande 1988), loggerhead sea
turtles (Crowder et al. 1994), and grizzly bears (Wielgus
2002); to explain population trends of an imperiled whale
population (Fujiwara and Caswell 2001); to detect the
signal of environmental change in the population
dynamics of long-lived plants (Doak and Morris 1999);
to study weed-control strategies in agricultural systems
(Mertens et al. 2002); to characterize the effect of envi-
ronmental disasters (Monson et al. 2000); and to analyze
the demography of unusual species (Gotelli 1991).

In a nutshell, PPMs are discrete-time, stage-struc-
tured models of population dynamics based on the
demographic rates of individuals. PPMs divide a species’
life history into distinct stages. Stages can be either
components of an individual’s life history (e.g., age
classes or developmental stages) or partitions of a con-
tinuous variable, such as size. The element in row i and
column j of a PPM is the average number of individuals
in stage i contributed by an individual in stage j over the
model’s time step (Caswell 2001). Contributions are
typically either transition rates between life stages of a
single individual or reproduction rates (contributions to
the youngest life-history stages). If initial stage-specific
densities of a population are known, population
dynamics can be projected by repeatedly multiplying the
PPM by a vector of stage-specific densities. The eigen-
structure of the PPM provides an abundance of useful
information, such as the long-term population growth
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rate (k, the dominant eigenvalue of the matrix), the
damping ratio (q, a measure of the rate at which tran-
sient dynamics decay, equal to the ratio of the magni-
tudes of the two largest eigenvalues), the long-term
relative abundance and reproductive value of different
stages (the right and left dominant eigenvectors of the
matrix, respectively), and sensitivities of population
growth to particular demographic transitions (Caswell
2001).

A drawback of PPMs is that they often encourage
estimating too many parameters from too few data,
particularly if each matrix element is considered a sep-
arate parameter to be estimated. This problem can be
pronounced when PPMs are used for rare or endangered
species where few individuals lead to few data. Over-
parameterization compromises PPMs by increasing the
statistical variability in estimates of matrix elements. To
counter overparameterization, matrix elements can be
modeled with statistical models that have fewer fitted
parameters. Indeed, some statistical models for matrix
elements have already been proposed for PPMs based on
partitions of a continuous state variable (e.g., Batista
et al. 1998; Morris and Doak 2002). Importantly, how-
ever, estimating matrix elements with statistical models
is not always preferable to estimating each matrix ele-
ment separately. Inappropriate statistical models can
produce bad estimates of matrix elements, despite fitting
fewer parameters. Consequently, attempts to estimate
matrix elements with statistical models must be coupled
with a data-driven evaluation of those models. Model
selection techniques provide the machinery for these
evaluations. As a final step, multimodel averaging allows
competing model outputs to be combined as a weighted
average, with weights based on the outcome of the
model selection (Burnham and Anderson 2002).

The goal of this paper is to outline, illustrate, and
investigate through simulation a strategy for improving
the estimation of PPMs by estimating matrix elements
with one or more statistical models, arbitrating among
these models with model selection, and constructing
multimodel averages of the competing models (Burnham
and Anderson 2002). Our goal is not to provide a one-
size-fits-all recipe but to describe a framework that is
flexible enough to be adapted to many situations. We
chose information criteria as our basis for model selec-
tion (Akaike 1973) although other model selection
methods, such as cross-validation, could be used instead.
In short, information criteria measure the empirical
support for competing models by estimating the average
discrepancy between a fitted model and reality (Burn-
ham and Anderson 2002). There are important subtleties
in using information criteria to arbitrate among models
for matrix elements, and we elaborate on these below.
We include a simulation because the theoretical prop-
erties of information criteria have been established only
for large samples (Akaike 1973; Hurvich and Tsai 1989;
Burnham and Anderson 2002), and simulations are
needed to examine their performance with smaller data
sets.

The rest of this paper is structured as follows. We first
introduce a motivating example with the cushion plant
Silene acaulis (Caryophyllaceae). We then describe our
general scheme for estimating, evaluating, and averaging
models for matrix elements and apply it to the Silene
data. The Silene example is followed by a simulation
study that compares the statistical properties of PPMs
with separately estimated matrix elements to PPMs
based on reduced-parameter models and multimodel
averages. A discussion closes the paper.

Motivating example

S. acaulis is a long-lived alpine cushion plant that is
common in both alpine and arctic tundra habitats
throughout the circumboreal zone (Hultén 1974). Plants
are composed of tight aggregations of short-leaved
branch tips (termed ‘‘rosettes’’) that hug the ground,
making either rosette number or two-dimensional area
good measures of plant size. Each cushion has a single
taproot, and there is no clonal reproduction. S. acaulis is
gynodioecious, but there are no differences in growth or
survival rates of females and hermaphrodites in this
population, so we follow Morris and Doak (1998) in
averaging reproductive rates across the sexes and clas-
sifying individuals by size alone. More details about the
biology of Silene and the data set we use here can be
found in Morris and Doak (1998, 2005).

The data we consider here come from a survey of 549
plants at one location in the Wrangell Mountains in
southeastern Alaska, USA (the Ridge site in Morris and
Doak 1998, 2005). In 1998, plants were tagged and
measured, and fruits were counted if present. One year
later, surviving tagged plants were measured again.
Plant size was measured in one of two ways. For plants
with fewer than 20 rosettes, plant size was measured by
counting the number of rosettes. Plants with more than
20 rosettes were photographed, and the two-dimensional
cushion area was quantified with image analysis soft-
ware. Survival, growth, and fruit production for these
data are shown in Fig. 1. We divided the Silene into 12
stages—seeds in the seed bank, seedlings, four stages
for plants classified by rosette number (1, 2–5, 6–10, and
11–20 rosettes), and six stages for the larger plants
classified by two-dimensional area (<12.5, 12.5–25,
25–50, 50–100, 100–200, and >200 cm2). Henceforth,
we call plants classified by rosette number ‘‘small
plants’’ and plants classified by two-dimensional area
‘‘large plants.’’ We do not consider the issue of choosing
stage boundaries here (see Vandermeer 1978; Moloney
1986).

Approach

In the most general terms, this approach entails pro-
posing and fitting one or more statistical models for
demographic transitions, using model selection to arbi-
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trate among the various models, and then calculating
multimodel-average estimates. The particular choice of
statistical models will depend on both biological context
and the type of data available, but separately estimated
matrix elements should be included as one of the can-
didate models. We have found it convenient to decom-
pose matrix elements into stage-specific vital
rates—fecundities, survival rates, and growth rates
conditional on survival—and to fit models to those vital
rates instead of the matrix elements themselves. For
example, a matrix element for transition to a larger size
class is the product of two vital rates, the survival rate
and the growth rate to the larger size class, given sur-
vival. We use the small-sample version of Akaike’s
information criteria, AICc (Hurvich and Tsai 1989;
Burnham and Anderson 2002) for model selection, and
we use Akaike weights based on AICc for model aver-
aging (Burnham and Anderson 2002).

This approach can be applied to any PPM, regardless
of how stages are defined. However, in the common case
when stages are partitions of a continuous state variable,
it is natural to estimate vital rates or matrix elements by
fitting a model of smooth changes in a vital rate with
state and then discretizing the fitted model to generate
vital-rate estimates (e.g., Batista et al. 1998; Morris and
Doak 2002). Because this situation is relatively common,
and because using information criteria to arbitrate
among models constructed in this way requires some
care, we discuss this scenario in detail using the survival

of small Silene plants to illustrate. The remainder of the
Silene example and the simulation provide additional
illustrations.

Consider estimating stage-specific survival rates for
small Silene plants. To develop some notation, write
the survival rate of stage i as si, i=3,...,6, write the
number of individuals in stage i as ni, and write the
number that survive as yi. Write the initial size (rosette
number) of individual k in stage i as xik, k=1,...,ni. The
probability model implied by the projection matrix is
that the yi’s are independent realizations of binomial
random variables with parameters ni and si, respec-
tively, so that the kernel of the likelihood function for
the si’s is

L s3; . . . ; s6jn3; . . . ; n6; y3; . . . ; y6ð Þ /
Y6

i¼3
syi

i 1� sið Þni�yi :

ð1Þ

To estimate the si’s separately, we maximize Eq. 1,
which gives the standard maximum likelihood estimates
(MLEs) ŝi ¼ yi=ni:

To estimate the si’s by fitting fewer parameters, and
to do so by leveraging the (presumably) smooth rela-
tionship between survival and size, we first posit a
smooth survival versus size function. A sensible choice
here is to model the logit of survival probability as a
linear function of size
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Fig. 1 Demographic data for
Silene acaulis. a Survival of
small plants. Points are jittered
for clarity. b Final size of small
plants (in number of rosettes)
versus size 1 year earlier. Plants
that grew to stages categorized
by cushion area are shown with
·’s and D’s. c Final size of large
plants versus size 1 year earlier.
Plants that shrank to stages
categorized by rosette number
are shown with ·’s. d Number
of fruits produced versus size
for large plants
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s x; a0; a1ð Þ ¼ exp a0 þ a1xf g
1þ exp a0 þ a1xf g ; ð2Þ

where s(x; a0, a1) is the survival probability of a size x
individual, and a0 and a1 are parameters to be estimated.
To estimate a0 and a1, we need to average s (x; a0, a1)
over the distribution of sizes in each stage. That is to say,
suppose /i(x) is the distribution of sizes in stage i and Li

and Ui are the lower and upper size limits of stage i.
Then the average survival rate for individuals in stage i is

si a0; a1ð Þ ¼
ZUi

Li

s x; a0; a1ð Þ/i xð Þdx: ð3Þ

We choose to estimate /i(x) by the empirical size dis-
tribution observed in the data, and so plugging this into
Eq. 3 gives

si a0; a1ð Þ ¼ 1

ni

Xni

k¼1
s xik; a0; a1ð Þ: ð4Þ

Plugging Eq. 4 into Eq. 1 gives a likelihood function for
a0 and a1

L a0; a1jn3; . . . ; n6; y3; . . . ; y6ð Þ

/
Y6

i¼3
si a0; a1ð Þ½ �yi 1� si a0; a1ð Þ½ �ni�yi ð5Þ

and maximizing this likelihood gives MLEs for a0 and
a1. Plugging these MLEs into Eq. 4 gives estimates for
s3,..., s6 that are functions of two fitted parameters.

By evaluating the likelihoods in Eqs. 1 and 5 at their
MLEs, the two parameters sets can be compared by
AICc. AICc is defined as

AICc ¼ �2 log L ĥ
� �
þ 2K

n
n� K � 1

� �
; ð6Þ

where L ĥ
� �

is the full likelihood (not just the kernel)
evaluated at the MLE of the parameters h, n is the
number of data points, and K is the number of estimated
parameters. The model with the smallest (most negative)
value of AICc is deemed AICc-best, and AICc differences
(DAICc) measure the lack of empirical support for
inferior models. Although there are no hard and fast
rules for interpreting DAICc, Burnham and Anderson
(2002, p. 70) suggest that models with DAICc>10 have
negligible empirical support. DAICc can also be used to
calculate Akaike weights, wi,

wi ¼
exp � 1

2Di
� �

P
r exp � 1

2Dr
� � ; ð7Þ

where the sum is over the models under consideration, Di

is shorthand for DAICc for model i, and Di=0 for the
best fitting model (Burnham and Anderson 2002). The
estimates from the competing models can then be aver-
aged (using the wi’s as weights) to generate multimodel-
average estimates. In the case of small Silene survival,

the reduced-parameter estimates are AICc-best, and
DAICc between the two models is 5.6. Consequently, the
Akaike weights are 0.909 for the reduced-parameter
model and 0.091 for the individually estimated vital
rates.

The important point here is that in order for AICc to
be used as a basis for model comparison, the parameter
estimates need to be the MLEs with respect to the
likelihood implied by the PPM. In this case, that means
that a0 and a1 need to be estimated by maximizing Eq. 5,
not by a simple logistic regression of the data in Fig. 1a.
The logistic model in Eq. 2 is not the model that is being
fit to the data because the PPM implies that all indi-
viduals in a stage have the same survival probability.
Instead, Eq. 2 together with Eq. 4 is a statistical model
that connects the stage-specific vital rates in neighboring
stages, allowing those vital rates to be estimated using
fewer fitted parameters.

Application to Silene data

Matrix elements for Silene seeds and seedlings were
estimated from a separate data set, and we do not con-
sider their estimation here. For small and large plants,
we reparameterize nonreproduction matrix elements as
the product of stage-specific survival rates and growth
rates given survival. Thus, there are six sets of rates to
consider: survival, growth, and reproduction rates for
small and large plants.

Survival

We have already estimated survival rates for small
plants. Mortality of plants with greater than 20 rosettes
is extremely rare. From a larger study of Silene
demography in the Wrangell Mountains (Morris and
Doak 2005), only ten deaths were observed among 3,584
plant-years of observations. Using these data, we set
survival for all large plant classes to 0.9972 in this study.
For consistency across all stages, survival rates of small
plants were also multiplied by 0.9972.

Growth

Among the small plants that survived, transitions to
stages 3–8 were observed. The final stages of small plants
that survived are independent realizations of multi-
nomial random variables. Specifically, if ni individuals
begin in stage i and survive (i=3,...,6), yij of these end in
stage j (j=3,...,8), and the conditional growth rates from
stage i to stage j are gij, then the kernel of the likelihood
for the gij’s is

L g33; . . . ; g68jn3; . . . ; n6; y33; . . . ; y68ð Þ /
Y6

i¼3

Y8

j¼3
gyij

ij : ð8Þ

82



Estimating each rate separately yields the MLEs ĝij ¼
yij=ni:

We based our reduced-parameter model for the gij’s
on a model of final stage versus initial size using a
proportional odds cumulative logistic model (Agresti
2002). In notation, let cj(x) be the probability that an
individual with initial size x ends up in stage j, j=3,...,8.
The cj(x)’s determine the cumulative transition proba-
bilities Cj (x)

Cj xð Þ ¼
Xj

k¼3
ck xð Þ: ð9Þ

The logits of the Cj(x)’s are linear functions of initial
size, x:

Cj x; b; z3; . . . ; z7ð Þ ¼
exp zj þ bx

� �

1þ exp zj þ bx
� � ð10Þ

for j=3,...,7 (C8(x) = 1). Eqs. 9 and 10 are converted to
average conditional growth rates by

gij b; z3; . . . ; z7ð Þ ¼ 1

ni

Xni

k¼1
cj xik ; b; z3; . . . ; z7ð Þ: ð11Þ

Plugging Eq. 11 into Eq. 8, maximizing the resulting
likelihood, and plugging the MLEs into Eq. 11 gives a
set of estimates for the gij’s as a function of six param-
eters.

To calculate the AICc of the separately estimated
growth rates, we set the number of estimated parame-
ters equal to the number of nonzero estimates, 13, al-
though one could argue that the true number of
estimated growth rates is 24. In either case, AICc

decisively chooses the individually estimated growth
rates. DAICc for the reduced-parameter model was
59.26 (w � 0), and so the multimodel-average growth
rates were nearly identical to the individually estimated
growth rates. The individually estimated growth rates
were preferable here because data were abundant
(n=348), and the growth rates based on the propor-
tional odds cumulative logistic model did not accom-
modate the relatively high rates of growth and
shrinkage observed from stages 5–6.

For large plants, we illustrate a different method here
that is based on modeling final size (instead of final
stage) as a function of initial size. For the sake of
modeling large plant growth rates, we converted the final
sizes of the three (of 51) stage 7 plants that shrunk to
stage 6 to a size in cushion area (Fig. 1c) and calculated
growth rates as if their final stage had been stage 7.
Afterward, we adjusted g76 and g77 accordingly.

The likelihood for the gij’s among large plants has the
same form as Eq. 8, with i, j=7,...,12. We consider two
reduced-parameter models for the gij’s. In both models,
log final size is modeled as a normal random variable,
with mean and variance determined by functions of log
initial size. Thus, if Lj and Uj are the lower and upper
size limits to stage j (U12=¥), then the probability that

an individual with initial size x ends up in stage j, given
that it survives, is

cj xð Þ ¼
Zln Uj

ln Lj

f y; l xð Þ; r2 xð Þ
� �

dy ð12Þ

where f (Æ |l, r2) is the probability density function of a
normal random variable with mean l and variance r2.
In both models, the variance is a (piecewise) linear
function of log initial size: r2ðxÞ ¼ maxðd0 þ d1 ln x; 0Þ:
In the first model, l(x) is a linear function of log initial
size: lðxÞ ¼ c0 þ c1 ln x; and in the second model, l(x) is
a quadratic function of log initial size: lðxÞ ¼ c0 þ
c1 ln xþ c2ðln xÞ2: To produce a likelihood function for
these models, we plug the appropriate expressions
for l(x) and r2(x) into Eq. 12, average Eq. 12 by an
expression similar to Eq. 11, and plug the resulting gij’s
into a likelihood similar to Eq. 8. This yields estimates
for the gij’s based on four or five fitted parameters.

As with small plants, we calculated AICc for the
separately estimated growth rates by counting the
number of estimated parameters as the number of
nonzero estimates (15 instead of 36). AICc favored the
model based on a linear relationship between mean log
final size and log initial size. DAICc’s for the quadratic
model and the separately estimated gij’s were 1.69 and
17.24, respectively, giving Akaike weights of 0.700,
0.300, and �0 for the linear, quadratic, and separately
estimated models. The reduced-parameter models out-
performed the separately estimated growth rates here
because few plants were observed in the largest stages
(n=11, 8 for stages 11 and 12, respectively), and the
reduced parameter models fit the data well.

Fecundity

Because Silene surveys were performed before seeds
were dropped, matrix elements for reproduction com-
bine fruit production, seed survival, and germination.
The latter two quantities were estimated from a separate
study (3.75% of fruits survive to the next survey without
germinating, and an additional 0.78% both survive and
germinate), and so the task here is to estimate average
fruit production for each stage, f3,...,f12. Among small
plants, only a few plants in stage 6 set fruit, so we
set f̂3 ¼ f̂4 ¼ f̂5 ¼ 0 and estimate f6 by the average
number of fruits per stage 6 plant. For large plants, we
assume that the number of fruits per plant is Poisson
distributed, so if there are a total of yi fruits produced by
the ni plants in stage i, i=7,...,12, the kernel of the
likelihood function is

L f7; . . . ; f12jn7; . . . ;n12; y7; . . . ; y12ð Þ /
Y12

i¼7
e�nifi f yi

i : ð13Þ

Estimating each average fecundity separately, the MLEs
are simply f̂i ¼ yi=ni:

83



We fit two reduced-parameter models for fi’s: one
that models the log of mean fruit production as a linear
function of the log initial size, and a second that models
the log of mean fruit production as a quadratic function
of the log initial size. For the first model, if f(x) is the
average fruit production for a plant of size x, then

f x; h0; h1ð Þ ¼ exp h0 þ h1 ln xf g: ð14Þ

The quadratic model is simply f x; h0; h1; h2ð Þ ¼
exp h0 þ h1 ln xþ h2ðln xÞ2

n o
: Eq. 14 is averaged across

stages by an averaging similar to Eq. 4 or Eq. 11, the
resulting averages are plugged into Eq. 13, and the
likelihood is maximized.

For the Silene data, AICc favors the separately esti-
mated fi’s decisively. DAICc’s for the linear and quadratic
models were 165 and 110, respectively. Thus, the multi-
model estimates of the fi’s equal the separately estimated
fi’s. Separately estimated fecundity estimates were fa-
vored because both reduced parameter models were un-
able to accommodate the small observed fecundity in
stage 11 relative to stages 10 and 12 (Fig. 1d).

Silene summary

The population projectionmatrix produced by estimating
each vital rate separately is shown in Table 1, and the

matrix produced by multimodel averaging is shown in
Table 2. The main difference between the two matrices
involves the shrinkage rates for large plants (matrix
elements immediately above the main diagonal for stages
7–12). Estimating matrix elements separately produces
shrinkage rates that vary markedly between neighboring
stages while the multimodel-average PPM yields more
gradual changes in shrinkage rates. In this case, the data
were not informative enough to support separate esti-
mates of shrinkage rates for each large plant stage, and the
multimodel average PPM adjusted accordingly by
smoothing the shrinkage rates across stages.

For the remaining matrix elements, the multimodel
average estimates were similar to the separately esti-
mated elements for several reasons. For small plant
survival, the reduced-parameter and separately esti-
mated estimates were similar. For small plant growth,
there were enough data to justify estimating each rate
separately. For large plant fecundity, the proposed re-
duced-parameter models did not fit the data well.

The differences in shrinkage rates did not impact the
estimate of k, the long-term population multiplication
rate—the PPM in Table 1 yields k=1.0047, and the
PPM in Table 2 gives k=1.0048. Instead, the main im-
pact of the smoothed shrinkage rates appeared in the
stable stage distribution (SSD, Fig. 2). Most notably,
the PPM with separately estimated elements predicts a
jump in the SSD between stages 10 and 11 while the

Table 1 Population projection matrix for Silene acaulis with each matrix element estimated separately

Stage 1 2 3 4 5 6 7 8 9 10 11 12

1 0.320 0 0 0 0 0.003 0.014 0.050 0.078 0.460 0.362 1.158
2 0.067 0 0 0 0 0.001 0.003 0.011 0.016 0.096 0.075 0.241
3 0 0.874 0.880 0.026 0 0 0 0 0 0 0 0
4 0 0 0.026 0.875 0.098 0 0 0 0 0 0 0
5 0 0 0 0.044 0.724 0.140 0 0 0 0 0 0
6 0 0 0 0.009 0.156 0.738 0.059 0 0 0 0 0
7 0 0 0 0 0 0.100 0.763 0.026 0 0 0 0
8 0 0 0 0 0 0.020 0.176 0.709 0.146 0 0 0
9 0 0 0 0 0 0 0 0.262 0.681 0.031 0 0
10 0 0 0 0 0 0 0 0 0.170 0.779 0 0
11 0 0 0 0 0 0 0 0 0 0.187 0.816 0.125
12 0 0 0 0 0 0 0 0 0 0 0.181 0.873

Table 2 Projection matrix for Silene acaulis estimated by multimodel averaging

Stage 1 2 3 4 5 6 7 8 9 10 11 12

1 0.320 0 0 0 0 0.003 0.014 0.050 0.078 0.460 0.362 1.158
2 0.067 0 0 0 0 0.001 0.003 0.011 0.016 0.096 0.075 0.241
3 0 0.874 0.883 0.026 0 0 0 0 0 0 0 0
4 0 0 0.026 0.869 0.099 0 0 0 0 0 0 0
5 0 0 0 0.043 0.729 0.139 0 0 0 0 0 0
6 0 0 0 0.009 0.158 0.737 0.057 0 0 0 0 0
7 0 0 0 0 0 0.100 0.743 0.063 0 0 0 0
8 0 0 0 0 0 0.020 0.196 0.708 0.076 0 0 0
9 0 0 0 0 0 0 0.001 0.225 0.749 0.069 0 0
10 0 0 0 0 0 0 0 0.001 0.172 0.750 0.078 0
11 0 0 0 0 0 0 0 0 0 0.177 0.700 0.066
12 0 0 0 0 0 0 0 0 0 0 0.219 0.932
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multimodel-average matrix predicts a smoother increase
in the SSD from stages 7–12.

These differences in SSD have substantial impacts on
an elasticity analysis of the PPM. The elasticity of a
matrix element or vital rate is the partial derivative of
log k with respect to the log of that matrix element or
vital rate, and is a scaled measure of how a change in the
matrix element or vital rate will affect population growth
(Caswell 2001). Elasticity analyses are used to identify
targets for conservation management strategies (Caswell
2000). Although Silene is not a species of conservation
concern, we calculate elasticities here as an illustration
of how they can differ between PPMs estimated from the
same data set. For the matrix with separately estimated
elements, the elasticities of large plant survival rates
(s7–s12) are 0.02, 0.04, 0.03, 0.03, 0.29, and 0.41. For the
multimodel-average matrix, these elasticities are 0.03,
0.04, 0.06, 0.09, 0.15, and 0.45. Thus, if we assume that
the multimodel-average matrix is superior (see the sim-
ulation below), a matrix with separately estimated rates
overestimates the importance of the survival of plants in
the second largest stage and underestimates the impor-
tance of other large plants’ survival.

Simulation study

The Silene example illustrates that a PPM can be esti-
mated by averaging models for matrix elements, and it
suggests that multimodel-averaged PPMs may differ
from PPMs with separately estimated elements in subtle
ways that may be important for management. However,

it is difficult to draw any conclusive comparisons be-
tween estimation methods on the basis of a single data
set where the ‘‘true’’ vital rates are unknown. Thus, we
conducted a simulation study to compare the statistical
properties of multimodel-average PPMs to PPMs with
separately estimated elements. This simulation is based
on the Silene example but does not match it exactly. In
the simulation, we have made some of the true vital rates
piecewise constant functions that change at stage
boundaries. We have done this not for biological reality,
but instead to ‘‘stack the deck’’ in favor of separately
estimated vital rates in some components of the matrix.
If multimodel-average matrices outperform matrices
with rates estimated separately here, we can be confident
that they will perform at least as well for real species
where it is unlikely that vital rates will be piecewise
constant functions that change exactly at size–class
boundaries.

The simulation envisions a population of plants that
are grouped into seed and seedling stages plus five size
classes: 0–10, 10–20, 20–40, 40–80, and >80 (units are
arbitrary). Forty percent of seeds in the seed bank sur-
vive each year but do not germinate, 20% germinate to
seedlings, and 75% of seedlings survive and grow to the
smallest size class. Seeds do not germinate in the year
that they are produced. Survival probabilities are 75%,
80%, 85%, 90%, or 95% for plants in size classes 1–5,
respectively. For those plants that survive, the log of
plant size at the next survey is a normally distributed
random variable with mean 0.5 + x � 0.025x2, where x
is the log size at the initial survey. The standard devia-
tion of log size at the next survey is 0.40, 0.35, 0.30, 0.25,
and 0.20 for plants in size classes 1–5, respectively. Fi-
nally, the number of viable seeds produced by a plant
(contributions to the following survey’s seed bank) is a
Poisson random variable with mean 2, 4, 6, or 8 for
plants in size classes 2–5.

When this population is at its SSD, the average
transition rates among stages are

A ¼

0:4 0 0 2 4 6 8
0:2 0 0 0 0 0 0
0 0:75 0:713 0:036 0 0 0
0 0 0:033 0:390 0:041 0 0
0 0 0:004 0:349 0:499 0:053 0
0 0 0 0:025 0:303 0:643 0:175
0 0 0 0 0:007 0:204 0:755

2

666666664

3

777777775

:

ð15Þ

In our simulation, we assumed that individuals were
sampled from a population at the SSD, and so the ma-
trix in Eq. 15 is the matrix that our simulations seek to
estimate. k for this matrix is 1.021.

We consider the seed and seedling transition rates
(the leftmost two columns of A) to be estimated from
other data and only estimate the transitions from the five
size classes. We simulated 500 data sets each for n=50,
n=100, and n=200 individuals from these size classes,
with each data set containing at least ten individuals
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Fig. 2 Stable-stage distributions (top) and reproductive values
(bottom) for population projection matrices for Silene acaulis.
Panels on the left are from the projection matrix with separately
estimated elements, and panels on the right are from the projection
matrix estimated by multimodel averaging
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from each class and at least one individual growing from
each size class. For each data set, we estimated stage-
specific survival rates (si, i=3,...,7), growth rates from
stage i to stage j conditional on survival (gij, i, j=3,...,7),
and average fecundities (fi, i=3,...,7). All three series of
vital rates were estimated both individually and by re-
duced-parameter models similar to those used in the
Silene example. Survival rates were estimated by the
logistic-based model in Eqs. 2 and 4, and growth rates
were estimated by the model in Eq. 12 with log mean
final size modeled as a linear function of log initial size.
We did not model log mean final size as a quadratic
function of log initial size because it would be unlikely in
practice to choose a model that matched the data-gen-
erating mechanism so well. Our model for fecundity rates
was based on a (piecewise) linear relationship between
average fruit production and initial size, f(x; h0, h1)=
max (h0+h1 x, 0), instead of the loglinear relationship in
Eq. 14.

For each data set, we constructed PPMs from the
separately estimated vital rates and from the multi-
model-average vital rates. As we did with Silene, we
counted the number of estimated parameters for sepa-

rately estimated growth rates as the number of nonzero
estimates. For illustration, we also constructed a PPM
using only the reduced-parameter vital-rate models. We
calculated k̂; the damping ratio q̂ð Þ; the SSD ŵð Þ; and
reproductive values v̂ð Þ for each PPM and calculated
mean squared errors (MSEs) of all quantities of interest
for each sample size.

Results

In nearly all the simulations with n=100 and n=200 and
in most of the simulations with n=50, the AICc-best
estimates were the separately estimated fecundity rates
and the survival and growth rates estimated with re-
duced-parameter models. DAICc’s were usually large
enough that the multimodel estimates were almost equal
to the AICc-best estimates. For nonreproduction matrix
elements, MSEs were generally smaller for multimodel-
average matrices than for matrices with separately esti-
mated vital rates (Fig. 3). In contrast, the reduced
parameter model chosen for fecundity estimates was
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poor, and so multimodel averaging did not reduce the
MSE of matrix elements for reproduction.

When n=50, multimodel-average PPMs reduced the
MSE of k̂ by 25% compared with PPMs with individ-
ually estimated elements, but the differences in MSEs
were negligible when n=100 and n=200 (Fig. 4). For all
three sample sizes, the damping ratio was estimated
more precisely by the multimodel-averaged matrix than
the matrix with individually estimated rates. For the
SSD and reproductive values, improvements in MSEs
from multimodel-average matrices varied, ranging from
large (e.g., v̂4 � v̂7Þ to slight or none (e.g., v̂1 � v̂3Þ; and
in some cases, MSEs from multimodel-average matrices
were larger (e.g., ŵ7; Fig. 4). In the large majority of
cases, however, multimodel-average PPMs produced
more precise estimates than matrices with separately
estimated rates. MSEs of sensitivities and elasticities for
matrix elements were also generally smaller for multi-
model-average matrices (data not shown). The specific
results observed here—multimodel-average PPMs re-
duced MSEs for nonreproduction matrix elements but
not for reproduction-based elements—are probably not

general but instead are attributable to the data-gener-
ating models and reduced-parameter models chosen.
However, we suspect that the broad pattern—multi-
model-average matrices do not reduce MSE everywhere
but on the whole provide better estimates than matrices
built from separately estimated vital rates or from re-
duced-parameter models—is general. These results
underscore the benefit of combining models that reduce
the number of fitted parameters in PPMs with model
selection techniques that evaluate the models chosen.

Discussion

Population projection matrices are widely used by
ecologists and wildlife managers to analyze or project
population dynamics on the basis of transition rates
among life history stages. From a statistical perspective,
however, PPMs invite overparameterization, especially
when the species being analyzed is rare or endangered
and consequently data are scarce. Here, we have out-
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lined, applied, and investigated a scheme for avoiding
overparameterization in PPMs. This scheme involves
proposing and fitting models for matrix elements (or the
stage-specific vital rates that determine matrix elements),
evaluating these models and separately estimated ele-
ments by model selection, and averaging the competing
estimates with multimodel averaging. We have used an
information criterion, AICc, for model selection al-
though other model selection methods could be used.
When an information criterion is used, care must be
taken to ensure that the likelihood on which the criterion
is based (and the one maximized to estimate parameters)
is the likelihood implied by the PPM.

Our simulation results suggest that multimodel-
average matrices will only affect the estimate of k when
the total sample size is small. On the other hand, esti-
mates of most other demographic measures such as
sensitivities, elasticities, and damping ratios will be more
precise with multimodel-average PPMs, even with rela-
tively large data sets. We speculate that this is so because
k is an aggregate measure of the data (and thus is
somewhat robust to possible matrix overparameteriza-
tion) while other demographic measures depend more
heavily on individual matrix elements. When matrix
elements are estimated separately, the quality of indi-
vidual estimates depends not just on total sample size
but on the distribution of data among stages. If sample
sizes differ among stages, then this data imbalance can
compromise the quality of separately estimated matrix
elements (and hence sensitivity and elasticity analyses)
even when total sample size is large. The method we
propose here provides a safeguard against estimating
more matrix parameters than the data support. Thus, we
conclude that multimodel averaging will have the most
benefit either when PPMs are used to conduct more
detailed demographic analyses than simply calculating k
or when the availability of individuals makes data more
scarce for some matrix stages than for others.

In the examples we have considered here, some stages
are partitions of a continuous state variable, and re-
duced-parameter vital-rate models are based on smooth
rate versus size relationships. In this setting, an alter-
native modeling option is an integral projection model
(IPMs) that does not divide individuals into stages
(Easterling et al. 2000; Rees and Rose 2002). Our point
here is not to argue against IPMs. However, we antici-
pate that situations will continue to arise in which
ecologists choose to use matrix models, and if matrix
models are to be used, their elements should be esti-
mated well. We think the procedures described here
contribute to that end.

Lastly, we emphasize that the general scheme here is
not limited to cases where stages are partitions of a
continuous state variable or where individuals are
marked and observed in consecutive surveys. The gen-
eral idea is flexible enough to accommodate a variety of
settings. For example, when stages are levels of a cate-
gorical state variable (e.g., egg, larva, pupa, adult),
alternative reduced-parameter models that equate vital

rates in neighboring stages may be appropriate [cf. §5.2
of Burnham and Anderson (2002)]. We have conducted
a second simulation study for this scenario and obtained
similar results (data not shown)—multimodel-average
matrices only slightly reduced the MSE of k̂; but they
substantially reduced the MSEs of some matrix ele-
ments, the stable stage distribution, reproductive values,
sensitivities, and elasticities. Also, we have only consid-
ered cases in which the probability of being unable
to relocate a tagged individual is negligible. In other
settings, such as capture–recapture studies of animal
populations, this may not be the case, and methods for
estimating PPMs need to account for capture histories
(Nichols et al. 1992; Fujiwara and Caswell 2001). Al-
though we do not pursue this here, we speculate that
consideration of reduced-parameter models for elements
of PPMs could be fruitfully combined with methods for
capture–recapture data as well (cf. Fujiwara and Caswell
2001).
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