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Abstract
Some of the most compelling examples of ecological responses to climate change are eleva-

tional range shifts of individual species, which have been observed throughout the world. A

growing body of evidence, however, suggests substantial mediation of simple range shifts

due to climate change by other limiting factors. Understanding limiting factors for a species

within different contexts, therefore, is critical for predicting responses to climate change. The

American pika (Ochotona princeps) is an ideal species for investigating distributions in rela-

tion to climate because of their unusual and well-understood natural history as well as

observed shifts to higher elevation in parts of their range. We tested three hypotheses for the

climatic or habitat characteristics that may limit pika presence and abundance: summer heat,
winter snowpack, and forage availability. We performed these tests using an index of pika

abundance gathered in a region where environmental influences on pika distribution have

not been well-characterized. We estimated relative pika abundance via scat surveys and

quantified climatic and habitat characteristics across two North-Central Rocky Mountain

Ranges, theWind River and Bighorn ranges inWyoming, USA. Pika scat density was highest

at mid-elevations and increased linearly with forage availability in both ranges. Scat density

also increased with temperatures conducive to forage plant growth, and showed a unimodal

relationship with the number of days below -5°C, which is modulated by insulating snowpack.

Our results provide support for both the forage availability and winter snowpack hypotheses.

Especially in montane systems, considering the context-dependent nature of climate effects

across regions and elevations as well as interactions between climatic and other critical habi-

tat characteristics, will be essential for predicting future species distributions.
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Introduction
Though climate change is now exceptionally well supported, the continued and future ecologi-
cal effects of climate change for a wide variety of species are less certain. The most compelling
evidence for ecological effects of climate change comes from shifts in species distributions [1–
3]. Elevation is frequently used as a surrogate for climate in predicting shifts in range limits,
and many researchers have predicted that species will migrate upslope with ongoing climate
change, because temperature, and in some cases precipitation, are strongly related to elevation
[4, 5]. However, syntheses suggest that many species do not actually fit the general expectations
for range shifts [6]. Effects of complex topography and other co-varying habitat characteristics
in mountain systems are likely to complicate the relationship between elevation and climatic
conditions, and species’ responses to shifting temperatures. Thus, more accurately understand-
ing how and why species are limited by climate and other factors in mountain habitats is an
important step in assessing the ecological effects of climate change.

In spite of this complexity, the multitude of alpine species that are responding to climate
change demonstrates that alpine environments are some of the most susceptible habitats to
changing climate [7–10]. The American pika (Ochotona princeps) is often considered one of
the most sensitive alpine species due to its unusual natural history, and has been touted as an
important indicator of changes in alpine habitats. Pikas are herbivorous lagomorphs that do
not migrate or hibernate and maintain a high metabolism through the summer, rendering
them vulnerable to the full suite of seasonal climate stressors and especially to temperature
extremes [11, 12]. Within habitats of suitable climate conditions, pikas occupy specific sub-
strates that provide refuge from predators and buffer them from thermal changes. These habi-
tats vary across their range and include mine tailings, rocky hills, lava beds and, in the Rocky
Mountains, primarily high elevation talus slopes. Since pikas are limited by environmental con-
ditions year-round and highly associated with specific habitats [13], there is strong potential
for climate, in combination with other factors, to limit their distribution.

The vulnerability of the American pika to extreme high temperatures has been recognized
for decades [12]. However, more recently, a focus on climate change impacts on ecological sys-
tems has prompted new research on the severity and ubiquity of these limitations. Pika popula-
tions in the Great Basin have shown patterns of extinction associated with high summer
temperatures, acute cold stress, forb cover and summer precipitation [11, 14–16]. In contrast,
Southern Rocky Mountain populations have shown little or no evidence of decline, but rather
show local extirpations associated with consistently dry sites [17]. In other parts of the pika’s
range, stable populations have been the norm, including at some exceptionally low elevation
sites and across a variety of substrates [18–21]. These patterns suggest context-dependent
responses to aspects of climate within a single species across its range. The American pika is
therefore an ideal focal species for the investigation of geographic variation in the relative influ-
ence of climatic and habitat variables across elevation, to improve understanding of context-
dependent effects of climate change.

The most dramatic changes in pika distribution have been documented on their range
periphery, in places that are relatively hot, dry, and often at low elevations. What remains
unclear is how climatic characteristics affect pikas in more northern, mesic habitats such as
within the North-Central Rocky Mountains, where pikas primarily inhabit alpine talus slopes.
Hot summer temperatures may be less of a concern at these latitudes, but with increasing year-
round temperature and precipitation variability, ambient climatic conditions may still limit
pika populations. In particular, in high-elevation montane environments, persistent insulating
snow cover is likely to be critical for over-winter survival. A combination of higher frequency
of melt-freeze cycles and a lack of insulating snow may lead to ruined haypiles (drying food
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needed for overwinter survival) and/or acute cold stress [11]. Pikas at more northern latitudes,
therefore, may not have the same climate and habitat limitations as those regions in which
studies have shown higher occupancy at high elevation and on northeasterly slopes [11, 18,
21]. Moreover, few studies have evaluated the relative abundance of pikas in relation to poten-
tial limiting factors, instead using presence/absence data to index local populations (but see 14,
22). Estimates of abundance may provide more nuanced inference about habitat suitability
than these occupancy indices.

We analyzed climate-related habitat features (i.e., elevation, aspect, elevation difference to
summit) and other habitat variables thought to be important for pika persistence (i.e., talus
depth and forage availability) and their joint effects on pika relative abundance as indexed by
scat density. We also tested for effects of several derived climate variables on scat density and
investigated which of these climate variables are indexed by elevation at our sites. Our primary
objectives were to 1) evaluate which habitat features may be most limiting to pikas in the north-
ern part of their range, including both features thought to index some aspect of climate and
other local habitat features identified as potentially important for persistence, 2) test the gener-
ality of these patterns across two similar yet geographically distinct mountain ranges in the
North-Central Rocky Mountains, and 3) use derived climate variables from temperature sen-
sors to investigate which aspects of climate most co-vary with elevation in this region. We first
looked for patterns in scat density with elevation and then tested three non-mutually-exclusive
hypotheses concerning the factors limiting pika abundance and distribution, each based on
previous research and the natural history of the American pika. The summer heat hypothesis
suggests that high summer temperatures limit pika numbers via acute and chronic heat stress
and reduced foraging and caching time [11, 12, 23]. Under this hypothesis we expected low
pika abundance at characteristically warmer sites based on habitat features, such as at low ele-
vation and southern aspects. The winter snowpack hypothesis emphasizes the importance of an
insulating snowpack during winter whereby variable snowpack could lead to cold stress or
death either by exposure to extreme cold, higher predation rates, and/or starvation by damaged
haypiles [11]. If winter snowpack was influencing pika abundance at our sites, we predicted
lower pika abundance at sites prone to variable snowpack conditions such as near the summit,
on wind-scoured slopes, or particularly low elevation sites where repeated melt-freeze cycles
are more likely to occur. Finally, the forage availability hypothesis suggests that food availability
has a strong limiting effect on pika numbers and distribution [24–26]. If forage availability was
a primary limiting factor on pikas, we expected a positive association between pikas and both
forage availability and climatic variables that create favorable plant growth conditions during
summer. While environmental conditions may also modify haying behavior, we reasoned that
the overall amount of forage available should still influence the numbers of pikas within an
area. Overall, our aim was to evaluate the support for these three hypotheses and thereby inves-
tigate which factors may be most limiting to pika relative abundance in our region.

Materials and Methods

Approach
We selected climatic and habitat variables related to the predictions of our three hypotheses
(Table 1) and assessed pika relative abundance within two distinct mountain ranges inWyo-
ming, USA, using scat density as an index. We tested general linear models including combina-
tions of elevation, aspect, elevation difference to summit, talus depth, and twometrics of forage
availability as potential predictive factors (Table 1), and judged the support for each using infor-
mation criteria (AICc). We then fit a series of models that included factors other than elevation
in the best model of the first analysis but replaced elevation with climatic variables (days above
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15°C, winter mean temperature, days below 0°C, days below -5°C, days below -10°C, days above
10°C, total degree days, length of growing season, and mean summer temperature) derived from
the local temperature data from one of the mountain ranges in a (Table 1). Finally, we tested a
full model suite of climatic variables and their ability to predict pika scat abundance.

Study sites
Our sites were located within the Wind River (hereafter Winds) and Bighorn mountain ranges,
which are separated by a 200 km-wide basin of sagebrush steppe. We chose the Winds for its
variation in topography and climate and abundant alpine habitat. Using aerial imagery, we
selected between 30 and 40 potential survey sites in each of four quadrants: northeast, south-
east, southwest, and northwest. At least eight of those sites were in each of three elevation clas-
ses:< 3,000 m; 3,000–3,500 m; and> 3,500 m. Similarly, we stratified across northeast,
southeast, southwest, and northwest aspects, and within each elevation group assigned at least
two sites for the four aspects. We used the intercardinal directions because prevailing weather
patterns in the Winds are primarily northwesterly and southeasterly. To ensure that potential
sites covered a broad range of available climatic conditions, we visually assessed precipitation
and maximum and minimum temperatures from Parameter-elevation Regression on Indepen-
dent Slopes Model (PRISM) data for January and July of each year from 2000–2009, choosing
potential sites that covered a broad range of pixel values for each of the climate variables. Simi-
larly, we used National Agricultural Imagery Program (NAIP) aerial imagery from July 2009 to
evaluate variation in forage availability and select sites with a wide range of number of red pix-
els, indicative of vegetation, within and around the potential survey area. We also chose sites
with variation in microclimate as indicated by snow presence in the imagery. In our list of
potential sites, we included those with both lingering snowfields and early snowmelt, as well as
sites with evident patches of vegetation and those with little to no apparent vegetation. We ulti-
mately selected 43 survey sites (i.e., talus patches; elevation 2540–3926 m) in 2010, based on
sampling across the broadest range of attributes available and accessibility. We considered a

Table 1. Habitat variables (top) and derived climate variables (bottom) used in general linear models andmodel selection analyses of relative pika
(Ochotona princeps) scat density in the Wind River (2010) and Bighorn (2011) mountain ranges, Wyoming, USA.

Variable Relationship to Climate Relevant Hypotheses

Elevation Inversely related to temperature Summer heat; winter snowpack

Aspect South and west are warmer aspects Summer heat; winter snowpack

Elevation difference to summit Index of wind and melt/freeze exposure Summer heat; winter snowpack

Patch forage N/A Forage availability

Perimeter forage N/A Forage availability

Talus depth N/A N/A

Variable Description Relevant Hypothesis

days above 15°C Total of days temperature � 15 Summer heat

winter mean Average temperature of days < 0 Snowpack

days below 0°C Total # of days temperature < 0 Snowpack

days below -5°C Total # of days temperature < -5 Snowpack

days below -10°C Total # of days temperature < -10 Snowpack

days above 10°C Total # of days temperature < 10 Forage availability

total degree days Total # days above 0 x average temperature Forage availability

length of growing season Total # of days above 0 Forage availability

summer mean Average temperature of days > 0 Forage availability

N/A = variables included in models as a necessary component of pika habitat but not considered a potential proxy for climate.

doi:10.1371/journal.pone.0131082.t001
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patch of talus or potential survey site to be a rock field primarily consisting of rocks> 0.5 m on
their longest axis that were often interspersed with small alpine meadows or other vegetation.
We defined the size and boundaries of each survey site based on local features such as a cliff
band, a marked change in aspect, or conspicuous line of vegetation such as trees or a meadow.
To ensure that we sampled potentially suitable sites, each site used in the analysis had to
include at least 75% talus, as ground-truthed in the field. We resurveyed 9 of the 43 sites in
2011 to test for potential year effects. Resurveyed sites included samples from each of the four
regions of the range, as well as sites at low, mid, or high elevations, and spanned all aspects.

In 2011, we conducted surveys in our second focal mountain range, the Bighorns. Similar in
geology, climate, and wildlife communities, the Bighorns served as an appropriate comparison
area to test the generality of patterns observed in the Winds. We chose 60 potential sites in the
Bighorns using the same methodology of stratifying survey sites across habitat and climate
attributes. Based on field logistics and accessibility, we ultimately surveyed 40 of those sites
(2158–3897 m) from 25 June -13 August 2011.

Ethics Statement
All data collection for our study was purely observational and did not involve a threatened or
endangered species and therefore the only permits obtained for this research were for access on
the Wind River Reservation for 2 of the 83 survey sites. We obtained permission to access
those sites through the Tribal Fish and Game. All other sites in the Winds were located within
the Shoshone and Bridger-Teton National Forests (between 12T 593644mE, 4804674mN and
668445mE, 4722213m N; NAD 83) and therefore did not require permission for access. Sites in
the Bighorns were all on public land in Bighorn National Forest (between 13T 322689mE,
4927468mN and 344272mE, 4890903mN; NAD 83) and therefore did not require permission
for access.

Pika Relative Abundance
Pikas are typically studied using occupancy methods due to logistical constraints [14]. Pres-
ence/absence data alone, however, yield limited ecological inference. We therefore used pika
scat density as an index of relative abundance, as a compromise between occupancy and den-
sity estimation. Scat counts have been one of the most widely used methods for quantifying the
relative abundance of mammalian species [27–31], and occupancy in lagomorphs [17, 31–34]
including pikas [22], because they provide a more stable record of presence and habitat use
than do visual observations. Pika scat is conspicuous and often persists for multiple years [35].
Additionally, large sample sizes of spatially-independent sites spanning a diversity of climatic
and other habitat variation were essential for testing our hypotheses. For broad, multi-site stud-
ies like ours, scat surveys are feasible to conduct across a large number of sites within a reason-
able amount of time.

We acknowledge several caveats related to our use of scat density for estimating pika num-
bers. Scat degrades over time, and possibly at an inconsistent rate across sites depending on
moisture levels. There is also some error associated with counting scat, as inevitably some piles
will not be located. However, we assume that environmental conditions are similar enough
across sites and that decomposition rates should also have been similar. We also very carefully
attempted to locate all scat piles, and assumed that scat that was unaccounted for was evenly
distributed across sites. Direct abundance estimates are indeed ideal for more accurate delinea-
tion of proximate abundance and temporal comparisons of abundance. Their usefulness for
characterizing factors influencing the distribution of a species known for its metapopulation
dynamics and weather-dependent behavior, however, is limited. Methods for assessing pika
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abundance that rely on aural and/or visual detections, for example, are subject to the vagaries
of ambient weather conditions and are time-intensive [14], rendering them impractical for
studies necessitating broad-scale spatial replication in remote and widely dispersed survey
sites. Similarly, using only very recent indicators of abundance, such as fresh sign, can intro-
duce confounding effects of inter-annual variation in numbers that are, from the point of view
of our questions, statistical noise. We therefore concluded that scat density was the best metric
for indexing general abundance across several sites within a single year, as a time-averaged sig-
nal of local habitat suitability.

We also assumed that pika abundance across years, as indexed by scat density, was a reliable
indicator of habitat suitability, a reasonable assumption given pika life history. Pikas are site-
faithful and have small home ranges. After dispersal, they occupy a territory for their lifetime
without seasonal movement and are therefore susceptible to whatever ambient abiotic and
biotic conditions exist at that particular site. With very little movement of individuals post-dis-
persal we expected that the density of scat, and therefore pikas, in a patch should be a good
indicator of how well that patch consistently supported pikas during recent years. Therefore,
using scat as an estimate of moderate-term abundance allowed us to infer the suitability of an
area for pika persistence, an important consideration for a species that is well-known to show
transient extirpations and recolonizations at local sites [36–38]. The method also enabled us to
avoid the potential confounding effects of ephemeral weather influences that can skew other
indices such as aural or visual pika detections. Even though pikas are typically conspicuous,
weather and season strongly influence detections of individuals within a single day or across a
season. We also considered using haypiles or only fresh scat as an indicator of pikas. However,
as proxies for abundance, these variables are also subject to temporal inconsistency. Haypiles
are usually difficult to detect before August and fresh scat is not simple to score with high
repeatability (Yandow, pers. obs.), and indexes only current year abundance, thereby ignoring
the inter-annual fluctuations in abundance. Haypiles were moderately correlated with pika scat
in the Winds in 2010 (r = 0.29, N = 43, P = 0.05) and strongly correlated with scat in the Big-
horns in 2011 (r = 0.78, N = 40, P< 0.01), providing additional evidence that scat was a reason-
able predictor of pika relative abundance.

We sampled scat at each survey site along parallel line transects [33, 34, 39]. We established
the starting point for each transect in one of three ways, as dictated by individual field situa-
tions: 1) at a talus/vegetation interface; 2) at a distinct natural feature of the landscape (rock
outcropping, cliff edge, etc.); or 3) where the aspect for the particular site changed. Size and
shape of the talus patch determined the number and length of transects [40]. There were 1–5
transects per site that ranged in length from 53 to 254 m. In cases where sites were established
within an entire hillside or ridgeline of continuous talus habitat, we sampled three transects
210 m in length. While the size of pika territories can vary, we assumed them to average ~30 m
in diameter [12]. Our approach, therefore, allowed for survey of ~2–9 possible pika territories
per transect but ultimately accounted for scat within 2 m of the transect line to give us an esti-
mate of scat density. This variable sampling effort, dependent on site size, was similar to that
employed by another recent paper on pika distribution [22]. We decreased the 210 m standard
to two 150 m transects for the Bighorn sites in 2011 to increase survey efficiency. We consid-
ered this reasonable because we maintained consistent transect placement and sampling meth-
ods. Parallel transects were 60 m from one another on the slope except for sites smaller than 8
pika home ranges. In such cases, we placed parallel transects 30 m from one another to allow
for approximately 1 pika home range between surveyors (6 sites of 83).

Surveyors slowly moved across talus slopes perpendicular to the fall line searching along a
given transect for all scat within 2 m on either side, including within crevices and rock inter-
stices. We counted pellets singly up to piles of 25, and due to the difficulty of reliably
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distinguishing between old and new scat, did not record these separately. If a pile had more
than 25 pellets, we simply recorded it as 25. Another study has used this number as a threshold
to determine site occupancy [18]. Pika scat tends to be clumped, which made it suitable to
record pellets within 1 m of a pile as part of the same pile. We calculated density of scat by
dividing by the number of meters surveyed for all transects at a given site. In a subset of resam-
pled sites, scat counts were significantly higher in 2011 (2010: X = 0.28, SD = 0.20; 2011:
X = 0.57, SD = 0.31; t(9) = -6.015, P< 0.001). However, scat counts by site across years were
highly correlated (r = 0.93, N = 7, P< 0.001).

Surveyor Bias
Four observers participated in our surveys in each year (2010 and 2011), with two participating
both years, for a total of six unique observers. To minimize potential observer bias, each year
observers were randomly assigned across varying site strata including elevation, aspect and
slope. To test for potential bias, in 2011 each of the four researchers surveyed the same extra
60-m “test transects” (n = 10). We used these data in a one-way ANOVA to test for observer
differences. There was no difference between observers (F2, 27 = 0.69, P> 0.05), and we
assumed potential observer differences were similar in 2010.

Forage Availability
Wemeasured forage availability via two metrics: the abundance of foraging habitat within a
patch (“patch forage”) and the proportion of the perimeter of the talus patch that was foraging
habitat (“perimeter forage”). At each site we surveyed forage availability from the middle of the
second transect or from a haypile within 12 m of that point when available and used a modified
point-intercept method [16]. In a few cases, the middle of the second transect was considered
unrepresentative of the site because it landed either on a rock outcropping or in the center of
the only meadow in the site. In such cases, we moved the survey point down slope 30 m. At
each survey point for patch forage, we established two perpendicular 50-m transects along
which vegetation cover types were recorded at 1-m intervals (n = 100 points per survey). The
number of points out of 100 that touched potential forage was our estimate of percent forage
availability. We included grasses, forbs, shrubs, trees, cushion plants, mosses, and ground
lichens as available forage because 1) pikas are generalist foragers [41] and 2) we observed all of
these forage types in pika haypiles.

We also estimated forage availability around the edge of each site to account for sites that
are primarily rock within the talus patch but have potential foraging areas around the perime-
ter [42]. We designated each meter along the scat survey line as available forage if there was a
distinct edge of meadow within 15 m (visual estimate of greater than 75% vegetation cover).
We divided the number of meters characterized as available forage by the total meters surveyed
to calculate the proportion of perimeter forage availability for each site.

Climatic Variables
We used Thermochron iButton temperature sensors to measure ambient temperatures at sites
in the Winds during 19 September 2010 through 17 August 2011 (model DS1921G; temperature
ranges -40°C to 85°C). We set all sensors to track temperature every four hours (02:00, 06:00,
10:00, 14:00, 18:00, and 22:00 hours each day). We deployed a sensor at the approximate center
of each survey site, near a haypile when available, to record ambient temperatures that a pika at
that site would likely experience. We sealed each sensor in a 0.5-ounce clear plastic case with
approximately one half of a teaspoon of anhydrous calcium chloride desiccant (DampRid). Each
sensor was affixed to a rock using clear polyvinyl tape and heavy-duty weed whacker line. The
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sensor was deployed approximately 0.75 m below the talus surface. Upon retrieval, several log-
gers were either missing, moved, or exposed to direct sunlight. Out of 43 sites, we retrieved 27
subsurface loggers that tracked temperature and were not exposed to direct sunlight.

We derived nine climate variables from the temperature sensor data related to our three
hypotheses: number of days above 15°C, number of days temperature reaching<0,<-5, and
<-10°C, mean winter temperature; number of days above 10°C, total degree days, length of
growing season, and mean summer temperature (Table 1). Our sampled temperature values
were substantially lower than the previously identified limiting upper temperature threshold
for pikas of 26°C [12]. Heat stress is therefore likely not a strong limiting factor at our sites.
Temperatures that elicit heat stress, however, may vary geographically due to local adaptation.
We therefore used the number of days above 15°C, which represented the upper 99th percentile
of temperatures documented at our sites, to examine potential effects of higher relative temper-
atures on pikas. We counted the number of days where any temperature value was below 0°C
as a measure of length of winter, and number of days below -5 and -10°C to test for two pro-
posed thresholds for acute cold stress on pikas [11, 16]. We used all days with any temperature
value above 0°C as the length of the potential growing season and calculated the mean temper-
ature of those days as an estimate of mean summer temperature. We also calculated average
total degree days in each growing season by multiplying the length of the growing season by
the mean temperature during the growing season. The mean summer temperature, total degree
days, and length of growing season variables were metrics of climate conditions suitable for
vegetation growth. A robust body of literature (e.g., [43–44]) has documented increased plant
growth with higher temperatures at high elevations and latitudes. Length of the growing season
is indicative of the absence of snow, onset of timing of green-up and overall biomass in addi-
tion to other factors [45]. Because our mean summer temperature values were substantially
lower in comparison to established lethal thresholds for pikas from previous studies [12, 23],
we conjectured that its dominant influence on pikas would be through its effects on plant
growth, and hence food production. We therefore used mean summer temperature to test our
forage availability rather than summer heat hypothesis. Total food available for pikas should be
the product of vegetated area (our measures of forage from the field) and productivity, indexed
by these weather variables. These two sets of factors could both contribute to pika abundance,
as, unsurprisingly, they were not strongly related to one another (Table D in S1 File).

We also tested several other climatic variables derived from interpolated and remotely
sensed precipitation (PRISM), temperature (PRISM), and snow cover data (MODIS and Sno-
DAS). These data sources are often used in wildlife studies to quantify climate [46–48], how-
ever, in our study, none of these had significant predictive power, likely due to a mismatch in
relevant spatial scales. Accordingly, we do not discuss these remotely sensed or interpolated cli-
mate measures any further.

Other Site Characteristics
Talus interstices provide pikas refugia from predators and facilitate body temperature regula-
tion. We estimated talus depth as an indicator of interstices at every 30 m along each transect
in 2010 and every 3 m in 2011. A 2-m snow probe was laid on the surface of the talus to
approximate the surface of a 1-m radius plot. Within the 1-m radius plot, we measured the ver-
tical distance between the bottom of the deepest crevice to the talus surface to the nearest 0.5
m. Finally, we refined field estimations of elevation and aspect and quantified elevation differ-
ence to summit using ArcGIS version 9.3. We estimated the elevation difference to the summit
to capture any effect of exposure to wind and therefore exposure to extreme temperatures dur-
ing winter and desiccation, which may vary across a mountain range [49].
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Statistical Analyses
We tested the support for our three hypotheses (summer heat, winter cold, and forage availabil-
ity) using an information theoretic approach. We used habitat and climatic variables in three
different tests to predict relative pika abundance, as indexed by scat density. First, we tested the
predictive power of habitat characteristics to explain scat densities by developing 39 general
linear models (GLMs) that included different combinations of linear and quadratic effects of 6
habitat variables (See Tables A and B in S1 File for a full list of models). These explanatory vari-
ables were elevation, aspect, and elevation difference to summit as potential proxies of climate,
and talus depth and the two metrics of forage availability to account for habitat features
expected to be meaningful to pikas though not necessarily indicators of climate. We used
Akaike’s Information Criteria corrected for small sample size (AICc) [50] to select the best-sup-
ported models for both datasets (Winds 2010 and Bighorns 2011). The AICc framework
allowed us to identify patterns observed in each mountain range separately to evaluate the gen-
erality of the top models and avoid the need to test extremely complex models that included
multiple interactions of mountain range with other factors.

Second, using the best-supported model from the first analysis, we replaced the linear and
squared terms of elevation with each of the nine temperature sensor variables derived from the
ibutton data at the 27 Winds sites. This suite of models was composed of ten candidate models,
including the original elevation model. We again used AICc to determine which climate factors
best-predicted scat density.

Finally, we evaluated a set of 220 candidate general linear models that included combina-
tions of linear and squared terms of relatively uncorrelated (r< 0.5) temperature sensor vari-
ables, with patch forage (See Table C in S1 File for a full list of models). The aim here was to
determine if there was a better model for predicting scat density than one based on the original
elevation model, and using a broader range of combinations of climate measures.

Results

Habitat Features Model Selection
Wind River Range. American pika scat/m2 ranged from 0.04 to 0.63 at sites (n = 43) in

the Winds in 2010 with a mean of 0.27 ± 0.027 SE. The AICcmodel with the strongest support
included linear and quadratic terms of elevation and a linear term of patch forage, with other
well-supported models including similar variables (Table 2). A null model had very little sup-
port (AICc = -22.8; ΔAICc = 12.6; Akaike Weight = 0.00). Summed Akaike weights of all mod-
els that included elevation and patch forage showed strong support for those variables
(summed Akaike weights = 0.73 and 0.98, respectively). Scat density increased with elevation
to an approximate apex at about 3600 m, beyond which density decreased (Fig 1A). The best-
supported relationship between patch forage and scat/m2 was linear and positive (Fig 1B).
Other variables had little to no support as predictors of scat density, including aspect, talus
depth, and elevation difference to summit.

Bighorn Range. Scat/m2 ranged from< 0.01 to 1.91 at the Bighorns sites (n = 40) with a
mean of 0.59 ± 0.087 SE. Patterns of scat density were strikingly similar to those in the Winds.
Scat density was highest at mid elevations and increased linearly with perimeter forage (Fig 1C
and 1D). The best-supported model included linear and quadratic terms of elevation and a lin-
ear term of perimeter forage, followed by models with similar terms (Table 2). The top model
had substantial support in comparison to most other models, including the null (AICc = 63.1;
ΔAICc = 11.1; Akaike Weight = 0.00). Though elevation and perimeter forage were correlated
(r = -0.74; see Table D in S1 File for correlation values of habitat variables from both ranges),
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there was substantial support for inclusion of both factors in explaining pika scat densities. The
difference between the AICc value for the best model containing elevation but not forage
perimeter, and the top model which included both effects, was 2.08, indicating the additive
contribution of both factors [50]. Summed Akaike weights of all models that included elevation
and perimeter forage showed strong and moderate support for those variables, respectively
(summed Akaike weights: elevation = 0.95; perimeter forage = 0.54). Scat density as a function
of elevation decreased sharply at approximately 3300 m (Fig 1C).

A narrow elevation band (~600 m) specific to each mountain range (Winds: ~3000–3600 m
and Bighorns: ~2700–3300 m) contained the widest range of scat density (Fig 1A and 1C). This
elevation band was shifted about 300 m higher in the Winds, which could be an effect of differ-
ence in latitude between the two ranges. The shape of the observed pattern, however, held for
both mountain ranges. Both patch forage and scat density were consistently low at high eleva-
tions (Fig 2). For further details on the data, see Tables A and B in S2 File.

Climate Data Model Selection
AICc results from the suite of models that substituted different local climate variables for eleva-
tion largely agreed with the analyses of a larger suite of models (Tables 3 and 4). In particular,
patch forage was present in most well-supported models in each suite, and two climate vari-
ables—days below -5°C and days above 10°C—were also present in virtually all well-supported
models (Tables 3 and 4). Other climate variables that were present in well-supported models
included mean summer temperature, mean winter temperature, total degree days, days below
-10°C, and growing season length. However, the summed AICc weights, which indicate across-
model support for a variable, where by far the highest for the top three variables: forage, days
below -5°C, and days above 10°C (Fig 3).

The climate metric with the highest support was days below -5°C, which always entered
models with support for both linear and quadratic terms (Tables 3 and 4). Scat density showed
a unimodal response to this variable, with the lowest scat/m2 at both the lowest and highest
number of days below -5°C and the highest scat/m2 around the mid-range of days below -5°C

Table 2. Results of general linear models of American pika scat density in theWind River and Bighorn Ranges, Wyoming, USA (2010–2011) in rela-
tion to habitat variables with models displayed based on Akaike’s information criterion corrected for small sample size (AICc).

Top models n k AICc ΔAICc wi adj r2

Winds

(elevation), (elevation2), (patch forage) 43 5 -35.39 0 0.44 0.32

(elevation), (elevation2), (patch forage), (patch forage2) 43 6 -33.02 2.36 0.14 0.31

(elevation), (patch forage) 43 4 -32.54 2.85 0.11 0.25

(patch forage), (difference to summit) 43 4 -31.64 3.74 0.07 0.24

Null model 43 2 -22.71 12.6 0.00 0.00

Bighorns

(elevation), (elevation2), (perimeter forage) 40 5 52.05 0.0 0.38 0.41

(elevation), (elevation2), (perimeter forage), (perimeter forage2) 40 6 54.10 2.05 0.14 0.40

(elevation), (elevation2), (patch forage) 40 5 54.69 2.65 0.10 0.37

(elevation), (elevation2) 40 4 54.79 2.74 0.09 0.34

(elevation), (elevation2), (aspect) 40 5 55.81 3.76 0.06 0.35

Null model 40 2 68.69 16.6 0.00 0.00

Models within 4 ΔAICc units of the top model are shown. Model weights (wi) were calculated for each model based on the number of parameters (k) and
number of sites sampled (n). See Tables A and B in S1 File for full model sets.

doi:10.1371/journal.pone.0131082.t002
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(Fig 4). Notably, days below -5°C varies with elevation, with more colder days at higher eleva-
tion (r2 = 0.25; Fig 4).

The other climate variables supported in one or the other model suite also varied with eleva-
tion (Fig 5). Days above 10°C, mean summer temperature, total degree days, and mean winter
temperature, all included in models that outcompeted elevation in the original model, each
declined with increasing elevation. Scat increased with mean summer temperature and total
degree days, decreased with mean winter temperature, and showed a either unimodal relationship
or linear increase with days above 10°C, depending on the model suite (Fig 6; Tables 3 and 4).

A model with only forage explained relatively little variance (adj. r2 = 0.16) compared to
that of the best-supported model in the final model suite (adj. r2 = 0.34). There was limited sup-
port for days below 0°C, summer mean temperature, and total degree days which were incon-
sistently among some of the top models and had similar summed weights. The other variables
we tested, including growing season length, winter mean temperature, days below -10°C, and
days above 15°C, had much weaker explanatory power than did the best climate variables (Fig
3). For further details on the data, see S3 File.

Discussion
Elevation is frequently used as a surrogate for climate in predicting species distributions.
This is especially the case for shifts in range limits because temperature and sometimes other
aspects of climate (i.e., precipitation), are strongly related to elevation. Many other important

Fig 1. American pika scat density as a function of top habitat predictor variables. Scat/m2 as a function of elevation (a) and patch forage availability (b)
in the Wind River Range, Wyoming, USA, 2010 (adj. r2 = 0.32), and elevation (c) and perimeter forage availability (d) in the Bighorn Range in 2011 (adj. r2 =
0.40). Lines in each panel represent the predicted relationship of the top model for each range, holding patch forage (a), perimeter forage (c), and elevation
(b, d) at their mean values.

doi:10.1371/journal.pone.0131082.g001
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characteristics of habitat, however, can also co-vary with elevation, sometimes in complex
ways. In the case of American pikas, forage availability is strongly associated with elevation,
and therefore climate, mostly likely due to the relationship of environmental and climatic con-
ditions across an elevation gradient (Figs 1 and 4), thereby complicating the interpretation of
elevation as a simple proxy for abiotic conditions. Furthermore, both elevation and forage

Fig 2. American pika scat density as a function of forage availability across elevation. Scat/m2 in the
Wind River (a; n = 43 sites) and Bighorn (b; n = 40) ranges in Wyoming, USA, 2010 and 2011, respectively.
Elevation ranges are: < 3100m (white), > 3100 and < 3600m (gray), > 3600m (black); n = 43 sites.

doi:10.1371/journal.pone.0131082.g002

Table 3. Results of models fit to relative American pika scat density at a subset (n = 27) of Wind River Range (Wyoming, USA) sites (2010) using
temperature sensor data showing the five best-supported models that replaced elevation with climate effects, as well as the best habitat variable
model and the null model.

Top models n k AICc ΔAICc wi adj r2

(below -5), (below-5)2, (forage) 27 5 -13.53 0.00 0.43 0.29

(above 10), (above 10)2, (forage) 27 5 -11.40 2.13 0.15 0.24

(summer mean), (summer mean)2, (forage) 27 5 -10.37 3.17 0.09 0.21

(total degree days), (total degree days)2, (forage) 27 5 -9.55 3.98 0.06 0.18

(winter mean), (winter mean)2, (forage) 27 5 -9.28 4.25 0.05 0.17

Null model 27 2 -9.19 4.34 0.04 0.00

(elevation), (elevation)2, (forage) 27 5 -8.87 4.66 0.04 0.16

Models were based on Akaike’s Information Criterion corrected for small sample size (AICc). Italicized variables have negative coefficients; model weights

(wi) were calculated for each model based on the number of parameters (k) and number of sites sampled (n).

doi:10.1371/journal.pone.0131082.t003
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availability were strong predictors of scat density, with both factors independently influencing
scat density. This relationship suggests that elevation indexes key climatic metrics, which
appear to independently influence both forage availability and scat density. The similar pat-
terns and explanatory support for elevation and forage availability in the two mountain ranges
of study strengthen our inference that these are the primary limiting factors in this North-Cen-
tral Rocky Mountain region, although these may differ from limitations in other parts of Amer-
ican pika range.

Table 4. Results of models fit to relative American pika scat density at a subset (n = 27) of Wind River Range (Wyoming, USA) sites (2010) using
iButton temperature sensor data showing the best models of the full suite.

Top models n k AICc ΔAICc wi adj r2

(above 10), (forage) 27 4 -14.38 0.00 0.05 0.27

(below -5), (below -5)2 27 4 -13.86 0.52 0.04 0.25

(below -5), (below -5)2, (forage) 27 5 -13.53 0.84 0.03 0.29

(below -10), (above 10), (forage) 27 5 -13.49 0.89 0.03 0.29

(summer mean), (forage) 27 4 -13.29 1.09 0.03 0.24

(below -5), (below -5)2, (total degree days), (forage) 27 6 -13.24 1.14 0.03 0.34

(below -5), (above 10), (forage) 27 5 -12.92 1.45 0.03 0.28

(below -5), (below -5)2, (growing length) 27 5 -12.76 1.61 0.02 0.27

(below -5), (total degree days), (forage) 27 5 -12.68 1.70 0.02 0.27

(below -10), (below -10)2, (above 10), (forage) 27 6 -12.59 1.78 0.02 0.32

(total degree days), (forage) 27 4 -12.59 1.79 0.02 0.22

(below -5), (below -5)2, (below 0) 27 5 -12.53 1.85 0.02 0.27

(below -5), (below -5)2, (growing length), (forage) 27 6 -12.49 1.88 0.02 0.32

Null model 27 2 -9.19 5.18 0.00 0.00

Models were based on Akaike’s Information Criterion corrected for small sample size (AICc) with ΔAICc and models within 2 ΔAICc units of the top model

are shown. Variables with negative coefficients are italicized. See Table C in S1 File for the full model suite.

doi:10.1371/journal.pone.0131082.t004

Fig 3. Summed Akaike weights for local microclimate and forage predictor variables. Summed Akaike
weights indicating overall support for predictor variables (f = forage; -5 = number of days below -5°C;
10 = number of days above 10°C; -10 = number of days below -10°C; s = mean summer temperature;
td = total degree days; leng = length of the growing season; 0 = days below 0°C; w = mean winter
temperature; 15 = number of days above 15°C) in relation to American pika scat density in Wyoming, USA
across all models tested.

doi:10.1371/journal.pone.0131082.g003
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Our results supported the forage availability hypothesis in two ways. First, the best-sup-
ported model included a positive effect of forage availability on pika scat density. Forage avail-
ability within talus patches and around patch perimeters were among the best predictive
variables for the Wind River and Bighorn ranges, respectively. While these metrics indexed dif-
ferent aspects of food availability, both are indicative of the same general effect. Since food
availability commonly influences species’ abundance, the positive linear relationship of forage
and scat density was not surprising. However, along with elevation, our results suggest that for-
age availability plays a particularly important role in this system.

Some alpine areas are comprised of talus/meadow mosaics and provide a heterogeneous
landscape with strong microclimatic variation, which promotes species richness of plants,
insects, and mammals [51–53]. Although pikas can range up to hundreds of meters in search
of forage [54], such diverse and patchy landscapes allow pikas to collect hay more locally,
which is more energetically efficient. Abundant and nearby forage enables pikas to cache as
much vegetation as possible during the short alpine growing season while still being able to
defend collected hay. Pikas may also consume uncollected forage within their territory if acces-
sible under the snow during winter, which can improve the odds of over-winter survival.
Another typical kind of talus patch consists of large lobes of pure talus with very little forage
available within the talus matrix. Often, these patches are characterized by a distinct talus-
meadow edge and high density of pikas near the interface, which provides an abundant and
diverse food source [12, 42]. Such nearby meadows are often local hot spots for biodiversity
[55] and may allow pikas to selectively collect forage for both summer and winter diets [56].

Fig 4. Relationship between American pika scat density and number of days below -5°C. Data were recorded with temperature loggers at 27 sites in
theWind River Range, Wyoming, USA from one year starting in August 2010. Colors represent different elevation ranges (white: < 3300m, (n = 9), gray:
3300-3600m, (n = 14); black: > 3600 m, (n = 4). The curve represents the predicted relationship from the top model of the temperature sensor analysis (adj. r2

= 0.29).

doi:10.1371/journal.pone.0131082.g004
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Fig 5. Correlations between four local climate measures and elevation. Climate variables included from
top to bottom: number of days above 10°C, adj. r2 = 0.34; mean summer temperature, adj. r2 = 0.28; total
degree days (°C*days), adj. r2 = 0.33; and mean winter temperature, adj. r2 = 0.09. All data were obtained via
ibutton sensors deployed at 27 sites in theWind River Range, Wyoming, USA for one year starting in August
2010.

doi:10.1371/journal.pone.0131082.g005
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Fig 6. Correlations between American pika scat density and four local climate measures. Climate
variables from top to bottom: number of days above 10°C, adj. r2 = 0.06; mean summer temperature, adj. r2 =
0.02; total degree days, adj. r2 = 0.04; and mean winter temperature, adj. r2 = 0.01; were obtained via ibutton
sensors in theWind River Range, Wyoming, USA deployed during August, 2010 –August 2011.

doi:10.1371/journal.pone.0131082.g006
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Forage availability in both types of suitable talus patches, one with a distinct talus-meadow
interface and the other with patchy meadows among the talus field, was an important predictor
of scat density.

The forage availability hypothesis was also supported by the climatic variables we tested.
Climate factors indicating warmer summer conditions (mean summer temperature, days
above 10°C, and total degree days) had substantial explanatory strength. All of these factors
were positively associated with scat density, and these relationships are likely related to food
availability. Several experimental manipulations have shown that environmental conditions
such as earlier springs and warmer growing season temperatures allow for increased plant
growth and reproduction in high elevation ecosystems [44,57,58]. For herbivores, plant pro-
ductivity enhances body condition and potential fitness, which may scale up to influence abun-
dance and distributions [59]. Favorable climatic conditions can also promote higher quality
forage for pikas [22]. Pika scat density was higher at sites where climate factors were favorable
for forage growth suggesting that limitation on pika distributions at this latitude are dependent
on plant growing conditions. Temperature sensors were placed within the talus, so caution is
needed in interpreting the recorded temperatures as those experienced by forage plants. We
assumed, however, that these temperatures were correlated with those experienced by sur-
rounding vegetation within the study site.

Our results also supported predictions of the winter snowpack hypothesis. The number of
days below -5°C was positively correlated with scat density up to about 120 days, and negatively
related at higher values. Because the days below -5°C variable indicates where temperatures are
low and thermal insulation is weak, the result emphasizes the importance of insulative snow-
pack for pikas, but only at relatively high numbers of cold days. Across all elevations, several
sites showed lower scat density with low numbers of particularly cold days. This result suggests
that up to a point, more cold days may be beneficial to pikas, perhaps because they indicate
conditions in which a stable insulating snowpack can be established. The relationship may
reach a threshold, however, beyond which there are simply too many very cold days for pikas
to withstand, such as on high elevation, wind-scoured slopes.

Our work highlights the context-dependent nature of climatic effects on species across ele-
vations within and across regions. The factors limiting American pikas across the two moun-
tain ranges in the North-Central Rocky Mountains in our study appear to be different than
correlates limiting pika range limits in other regions such as the Great Basin [11, 15, 16], where
combinations of acute cold, and heat in addition to other factors appear to be important drivers
of persistence. We emphasize that the highest elevation sites may not be a suitable refuge from
climate change at all latitudes. Pikas may already be at their upper elevation limit in parts of
their range [60], which is contrary to the idea that conditions at lower elevations are the pri-
mary limit on current pika distributions. With a lack of extreme high values in our temperature
data and little support for the above 15°C climate variable, there was no support for the sum-
mer heat hypothesis, suggesting that pikas at this latitude are currently not limited by hot sum-
mer temperatures. Elevation may limit pikas and other alpine species in future warmer years,
but we expect that these physiological limits will be strongly modified by constraints imposed
by food availability. Our results demonstrate a complex set of climatic and elevation effects
that make forecasting from current elevation and climate relationships to future conditions
more ambiguous. In future warmer years, additive and interactive effects of climatic conditions
and alpine habitat distribution will likely influence pika range shifts. Further work investigating
the influence of climatic variables on abundance (e.g., [17]) as well as specific forage require-
ments would add to our understanding of the complexities of this climate-species relationship,
and facilitate the predictability of pika and alpine-meadow distribution and abundance.
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While several alpine species worldwide have responded to changing climate by moving
upslope [8, 61, 62], our findings suggest that such responses by American pikas could be
severely limited by the interactive effects of elevation and food availability and quality. Under
current conditions there appears to be broad overlap of suitable vegetation communities and
climate conditions for pikas in the North-Central Rocky Mountains, but these zones might
diverge with rapid climate change. Plant species within the alpine zone are likely to respond in
a variety of ways to climate change, but in general, development of highly productive alpine
meadows at higher elevations will require substantial soil development, resulting in long lags
between warming temperatures and establishment of suitable forage conditions for pikas [63,
64]. We speculate that a combination of rapid upward movement of climate conditions suitable
for pikas, but only slow migration of suitable plant communities, is likely to create a much nar-
rower zone of inhabitable conditions for pikas over the near term. There is ongoing conserva-
tion concern for this species that resulted in a petition for listing under the Endangered Species
Act in 2010. As climate change continues and novel climatic conditions continue to emerge,
implications for the American pika will likely involve combinations of physiological and/or
food resource limitation. We suggest that effective pika conservation will therefore require a
comprehensive and multifaceted consideration of this species’ limitations.
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