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ABSTRACT: Life-history theory predicts vital rates that on average
make large contributions to the annual multiplication rate of a line-
age should be highly buffered against environmental variability. This
prediction has been tested by looking for a negative correlation be-
tween the sensitivities (or elasticities) of the elements in a projection
matrix and their variances (or coefficients of variation). Here, we
show by constructing random matrices that a spurious negative cor-
relation exists between the sensitivities and variances, and between
the elasticities and coefficients of variation, of matrix elements. This
spurious correlation arises in part because size transition probabil-
ities, which are bounded by 0 and 1, have a limit to their variability
that often does not apply to matrix elements representing repro-
duction. We advocate an alternative analysis based on the underlying
vital rates (not the matrix elements) that accounts for the inherent
limit to the variability of zero-to-one vital rates, corrects for sampling
variation, and tests for a declining upper limit to variability as a vital
rate’s fitness contribution increases. Applying this analysis to demo-
graphic data from five populations of the alpine cushion plant Silene
acaulis, we provide evidence of stronger buffering in the vital rates
that most influence fitness.
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Life-history theory consistently predicts that temporal var-
iability in the annual multiplication rate of a genotype will
reduce its long-term fitness because long-term fitness is
best measured by the geometric, not the arithmetic, mean
annual multiplication rate and because temporal vari-
ability reduces the geometric mean (Lewontin and Cohen
1969; Gillespie 1974). For perennial organisms, variability
in the annual multiplication rate arises from variability in
the vital rates (i.e., the rates of survival, reproduction, and
growth of different-sized or -aged individuals). However,
different vital rates typically make different contributions
to the annual multiplication rate. Consequently, the same
amount of temporal variability in two different vital rates
will not generally reduce long-term fitness to the same
degree. The growth rate of a lineage in a randomly varying
environment is typically modeled using stochastic projec-
tion matrices, the elements of which are functions of the
underlying (and temporally varying) vital rates (Caswell
2001). Tuljapurkar (1982) showed that for a lineage de-
scribed by a stochastic projection matrix, the log of the
long-term annual multiplication rate, log\,, is approxi-
mately

- 1
log\, = log\, — 2—)—\22 Var (a,)S; — ¢, ey
1 bj

where A, is the asymptotic annual multiplication rate pre-
dicted by the mean matrix, a; and Var (a;) are the mean
and variance of the element in row i and column j of the
matrix, and ¢ is a term that involves the covariances be-
tween different matrix elements. According to equation
(1), temporal variability in matrix element a; (as measured
by Var (a;)) reduces long-term fitness only in proportion
to S; = d\,/0a;, the so-called sensitivity of the annual
multiplication rate of the mean matrix to changes in the
mean of element a; (Caswell 1978).

Because the product of the variance and the (squared)
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sensitivity of a matrix element appears as a negative term
in equation (1), Pfister (1998) predicted that natural se-
lection should favor traits that buffer those matrix ele-
ments with the highest sensitivities against temporal en-
vironmental variability. More specifically, she predicted
that there should be a negative correlation between the
variance of a matrix element and its sensitivity. However,
Pfister (1998) also noted that as matrix elements repre-
senting transitions among size classes are bounded by 0
and 1, whereas elements representing reproduction may
be substantially >1, the variances of these different matrix
elements may not be directly comparable. Moreover, sen-
sitivities measure the absolute change in the annual mul-
tiplication rate in response to an absolute change in a
matrix element, but a given absolute change in a matrix
element representing survival or growth may be less likely
to occur than would the same absolute change in a matrix
element representing reproduction, which can vary over
a wider range of values (Caswell 2001).

In recognition of these potential limitations of com-
paring variances and sensitivities, Pfister (1998) also tested
for a negative correlation between CV,, the coefficient of
variation (i.e., the standard deviation divided by the mean)
of matrix element a;, and its elasticity, E;. Elasticities gauge
the proportional change in the annual multiplication rate
in response to proportional changes in matrix elements
and provide relative measures of the influence on the mul-
tiplication rate of changes in different matrix elements (de
Kroon et al. 1986). Similarly, the coefficient of variation
measures the variability of a matrix element relative to its

mean. Because Var (a;) = @,CV; and S} = XfEfj/dfj, equa-
tion (1) can be rewritten as
.
log\, ~ log X, — 52 CV7E.— ¢, @)

which leads to the prediction that matrix elements with
high elasticities should have low coefficients of variation.
Using published projection matrices, Pfister (1998) found
that both the correlations between the variances and sen-
sitivities and the correlations between the coefficients of
variation and the elasticities of matrix elements were
skewed toward negative values, as her hypothesis
predicted.

However, as we show here, use of the coefficient of
variation still does not make levels of variability in different
types of matrix elements directly comparable. Moreover,
by constructing stochastic matrices at random, we show
that spurious negative correlations exist between the co-
efficients of variation and the elasticities of matrix elements
and between their variances and sensitivities, and we ex-
plain why these spurious correlations arise. Consequently,
a negative correlation between the variances and sensitiv-

ities or between the elasticities and coefficients of variation
of matrix elements cannot be unambiguously interpreted
as the result of natural selection favoring life-history traits
that buffer highly influential demographic processes
against environmental variability.

To get around these spurious correlations, we advocate
an alternative analysis based on the underlying vital rates
themselves rather than the amalgamated matrix elements.
We illustrate this analysis using demographic data from
five populations of the long-lived alpine cushion plant
Silene acaulis (Morris and Doak 1998, 2004). Using this
analysis, we present stronger evidence that the vital rates
with the most influence on the annual multiplication rate
are relatively less variable over time.

Apart from avoiding the spurious correlations, there are
two more reasons to base a test for demographic buffering
on vital rates rather than matrix elements. First, a single
vital rate often contributes to several matrix elements, and
variation in the vital rates (e.g., the survival and growth
probabilities) generates variation in the matrix elements
(e.g., the probability an individual undergoes a transition
to the next largest size class). Buffering of a survival rate
would simultaneously buffer all of the matrix elements
influenced by that survival rate. Treating matrix elements
as independent when testing for buffering is not justified
(but is often the only available option when the amal-
gamated matrix elements, and not the underlying vital rate
values, are the only data published, which was true for
most of the demographic studies Pfister [1998] examined).
Second, raw estimates of the environmental variability in
demographic rates (either vital rates or matrix elements)
are typically inflated by sampling variation (Nichols et al.
1996; Gould and Nichols 1998; Kendall 1998; White 2000).
Limited sample size would cause estimates of a demo-
graphic rate to vary from year to year even if the true rate
were constant. Because our goal in assessing buffering is
to obtain as accurate an estimate as possible of the en-
vironmentally driven variation in demographic rates, we
should first discount raw estimates of variability for sam-
pling variation. Existing methods to do so focus on the
vital rates (Nichols et al. 1996; Gould and Nichols 1998;
Kendall 1998; White 2000).

Finally, we note that a negative rank correlation between
the coefficients of variation and the elasticities of vital rates
(or between their variances and sensitivities), the statistical
indicator chosen by Pfister (1998), is only one way that
demographic buffering might manifest itself. Testing for a
negative rank correlation presupposes both that highly in-
fluential demographic rates will have low variabilities and
that low influence rates will be highly variable. However,
while it is clear that high levels of variability in highly
influential rates should be detrimental to long-term fitness,
there is no reason to expect that low variation in demo-



graphic rates with little effect on fitness should be selec-
tively disfavored. In our view, it is more appropriate to
test for an upper limit to the levels of variability of demo-
graphic rates that declines as their average influence on
fitness increases. The existence of a declining upper limit
can be evaluated using quantile regression (Cade et al.
1999). In this article, we test for both of these possible
manifestations of demographic buffering by using data for
S. acaulis.

Neither Variance nor Coefficient of Variation Measures
Variabilities of Different Types of Matrix
Elements on Same Scale

Although the coefficient of variation does measure the
variability of each matrix element relative to its mean, both
the variance and the coefficient of variation will often be
more severely bounded for zero-to-one matrix elements
(e.g., those describing transition probabilities among size
classes) than they will be for matrix elements that represent
reproduction, which often exceed 1. Reproduction ele-
ments with a high mean can also have a high temporal
variance (and thus a high coefficient of variation). In con-
trast, zero-to-one matrix elements cannot have both a high
mean and a high variance. Perhaps the most flexible and
biologically reasonable probability distribution to repre-
sent zero-to-one random variables is the 3 distribution. It
is well known that the variance of the 8 distribution is
constrained. If p is the expected value of the 8 random
variable X, the largest variance occurs when the variable
takes on the value 1 a proportion p of the time and the
value 0 a proportion 1 — p of the time (note that the
expected value of Xis E{X} = 1 x p+0 x (1 — p) = p).
The maximum variance of X is then

Vo X} = 0—p’Q—p+A—-p°p=p0—p, B

which is 0 when p is 0 or 1 and attains a maximum of
0.25 when p = 0.5 (fig. 1). Therefore, the maximum of
the coefficient of variation is

Vp(l — p) 1 —
:P lep' @

E{X} p p

max

VodX]
CV, =

max

As p approaches 0, CV,, {X} approaches infinity, and when
p =1,CV, (X} = 0 (fig. 1). Thus, both the variance and
the coefficient of variation of a zero-to-one matrix element
cannot be high if its mean is high.

Because of the upper limit in equation (4), even the
coefficient of variation does not place the variabilities of
class transition and reproduction elements on the same

measurement scale. Another worrisome feature of the co-
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Figure 1: Maximum values of the coefficient of variation and the variance
of a B random variable as functions of the mean.

efficient of variation for a zero-to-one matrix element is
the fact that it must approach 0 as the mean approaches
1 (fig. 1). For long-lived, slow-growing organisms, the ma-
trix elements with the highest elasticities are typically those
that represent stasis (i.e., survival without growth) of in-
dividuals in the larger or older classes (Crouse et al. 1987;
Silvertown et al. 1993; Doak et al. 1994; Pfister 1998; Hep-
pell et al. 2000; Saether and Bakke 2000; Crone 2001; Oli
and Dobson 2003). For such a life history, the means of
the stasis elements are often close to 1 and cannot have a
high coefficient of variation. These elements have high
elasticities in part because, by definition, the elasticity of
a matrix element is an increasing function of its mean
(specifically, it is the mean multiplied by the sensitivity
and divided by the mean annual multiplication rate). Be-
cause the elasticity is directly proportional to the mean
but the coefficient of variation is inversely proportional to
the mean (fig. 1), we expect the elasticities and the co-
efficients of variation of zero-to-one matrix elements to
be negatively correlated if their means differ.

Unlike elasticities, the sensitivity of a matrix element is
not an explicit function of the mean (although changing
the mean of any matrix element will change all of the
sensitivities in complex ways; Caswell 1996). Moreover,
the variance of a zero-to-one matrix element is not a
strictly decreasing function of the mean (fig. 1). Therefore,
in general, we do not expect to see a negative correlation
between the variances and sensitivities of zero-to-one ma-
trix elements alone. Nevertheless, because the matrix el-
ements with the highest sensitivities tend to be zero-to-
one elements (Pfister 1998) whose variances are therefore
constrained (fig. 1), we again expect to see a negative
correlation between the variances and sensitivities when
both types of matrix elements are included in the analysis.
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The preceding arguments suggest that negative corre-
lations between the coefficients of variation (or variances)
and the elasticities (or sensitivities) of different matrix el-
ements may not represent a consequence of natural se-
lection favoring traits that buffer the most influential ma-
trix elements against environmental stochasticity. Instead,
such correlations may arise from a ceiling on the variance
or the coefficient of variation of zero-to-one matrix ele-
ments that does not apply to other matrix elements and
from the fact that both the coefficient of variation and the
elasticity of a zero-to-one matrix element are functions of
the mean. To test these conjectures, we constructed pro-
jection matrices at random (i.e., with no selection in-
volved) and looked for correlations between measures of
the variability of matrix elements and measures of their
influence on the annual multiplication rate.

Spurious Negative Correlations between Coefficients of
Variation (or Variances) and Elasticities (or
Sensitivities) of Matrix Elements

To test for spurious correlations, we generated series of
projection matrices from the underlying vital rates, which
we varied at random. The key feature of our simulations
is that we forced all vital rates of a given type (survival,
growth, or fertility) to be equally variable. The resulting
matrices thus could not have been shaped by natural se-
lection to buffer variation in any of the vital rates, and
any correlation that emerged between the coefficients of
variation and the elasticities, or between the variances and
sensitivities, would be spurious.

Random matrix series were constructed as follows. We
varied the number of size classes from three to 12. For
each, we generated 1,000 series of five annual matrices.
Parameterizing a series of five projection matrices would
require a 6-yr demographic study. Six years was the length
of our moss campion study (Morris and Doak 2004) and
is toward the long end of the studies examined by Pfister
(1998) and indeed of all published demographic studies
(see fig. 10.2 in Morris and Doak 2002).

Surviving individuals could either remain in the same
size class or grow to the next largest size class. We assumed
a postbreeding census of a birth-pulse population (Caswell
2001) so that the reproduction elements in the first row
of each matrix included the survival probability for the
corresponding adult size class. To illustrate, the matrices
with four size classes had the format

MO0 — g0 pOkEO pOAO PO
_ pl(t)gl(t) Pz(t)[l - gz(t)] 0 0

Ao =" pe®  pol-g® o L

g o 0 pg®  po O

(5)

where p;(?) is the probability that an individual in size class
j survives from year ¢ to year t + 1, g(t) is the probability
that a surviving individual in size class j in year t grows
into size class j+ 1 in year ¢+ 1, and f(t) is the average
number of newborns an individual in size class j produces
during the birth pulse. To make the matrices biologically
realistic, we assumed that the means of p,(t) and f(¢) in-
crease linearly and that the means of g;(t) decrease linearly
with size class j (i.e., larger individuals have higher survival,
greater offspring production, and slower growth on av-
erage than do smaller individuals), but we chose the slopes
and intercepts of these linear functions at random (while
keeping zero-to-one vital rates properly bounded).

We drew each year’s p; and g from 3 distributions with
coefficients of variation equal to 0.1 or 0.3 times the ap-
propriate CV, . given each vital rate’s mean (see eq. [4];
because the results were qualitatively similar for both levels
of variability, we report only results for the lower level).
Thus, all of the survival and growth rates had the same
degree of relative variability. We drew the fertilities (f)
from lognormal distributions. Because the variance of the
lognormal has no upper limit, it is not possible to set the
coefficients of variation of the fertilities as a fixed pro-
portion of their maxima as we did for the survival and
growth rates. Instead, we chose their variabilities in two
ways, both of which can be seen to make the fertilities
equally variable across size classes. First, we assigned all
fertilities the same coefficient of variation (0.1 or 0.3). This
can be viewed as fixing the relative variability because the
standard deviation of fertility increases in direct propor-
tion as the mean fertility increases across size classes, al-
though as a consequence, the variance in fertility increases
with size. Alternatively, we assigned all fertilities the same
variance (equal to that of the median size class in the first
scenario), which implies that the fertilities of the smaller
size classes are more variable relative to their means. We
discuss the implications of these two approaches in the
final section of the paper.

We used the mean of the five random matrices to cal-
culate the matrix element sensitivities and elasticities. For
each replicate matrix series, we computed Spearman’s rank
correlation between the matrix element variances and sen-
sitivities and between the coefficients of variation and the
elasticities following Pfister (1998).

Even though our simulations forced all vital rates of a
given type to have the same level of variability, the cor-
relations between the coefficients of variation and the elas-
ticities of all matrix elements were skewed toward negative
values (see fig. A1A, ALE in the online edition of the
American Naturalist), and the confidence interval for the
mean rank correlation did not overlap 0 (table 1). This
was true for both types of variation in fertilities. The cor-
relations between the variances and sensitivities of all ma-
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Table 1: Spearman’s rank correlation coefficients between variabilities and importance measures of matrix elements from

randomly constructed matrix series

Raw rank correlations

Partial correlations

All matrix Zero-to-one matrix All matrix Zero-to-one matrix
Type of correlation elements elements only elements elements only
All fertilities with equal coefficient
of variation:
Coefficients of variation vs.
elasticities —.1271 —.1897 —.1357 —.0453°
(=.1331, —.1212) (—.1966, —.1828) (—.1415, —.1300) (—.0522, —.0385)
Variances vs. sensitivities —.4790 .0268 .0026° .1204°

(—.4826, —.4753)
All fertilities with equal variance:
Coeffecients of variation vs.

elasticities —.0972
(—.1036, —.0909)
Variances vs. sensitivities —.4686

(—.4724, —.4649)

(.0199, .0337) (—.0031, .0084) (.1132, .1276)

—.1933 —.0976" —.0410"
(—.2003, —.1862) (—.1038, —.0914) (—.0479, —.0340)
0327 .0183° 1251°

(.0258, .0396) (.0125, .0241) (.1178, .1323)

Note: Mean correlations with confidence intervals that do not include 0 are in bold. Means are shown with 95% confidence intervals in parentheses.
Partial correlations were used to adjust for shared dependence on the mean. Distributions of raw rank correlations are shown in figure Al in the

online edition of the American Naturalist.

* In some cases, the rank correlation between the means and either the variances, coefficients of variation, sensitivities, or elasticities equaled 1.

As the partial correlation formula would then involve division by 0, partial correlations could not be calculated for these cases.

trix elements were even more strongly negatively biased
(table 1; fig. A1C, A1G). Removing the reproduction el-
ements and basing these correlations only on the zero-to-
one matrix elements (i.e., those that are subjected to the
variability limit) does not eliminate bias (fig. A1B, A1D,
AlF, A1H); the correlations between the coefficients of
variation and the elasticities are even more negative on
average, and the variance-sensitivity correlations have a
small but significant positive bias (table 1). Because mea-
sures of variability (variance and coefficient of variation)
and measures of importance (sensitivities and elasticities)
may both be correlated with the means of the matrix el-
ements, Pfister (1998) also computed the partial correla-
tion between them holding the mean constant (using eq.
[16.20] in Sokal and Rohlf 1995, p. 649). For our randomly
constructed matrices, most of these partial correlations
were still significantly biased, the exception being the var-
iance-sensitivity correlation using all matrix elements
when all simulated fertilities had the same coefficient of
variation. However, note that for some of our random
matrix series, these partial correlations could not be com-
puted (table 1).

Thus, there is a spurious negative correlation between
the coefficients of variation and the elasticities of all matrix
elements, as well as between their variances and sensitiv-
ities, that must be taken into account when determining
whether demographic processes that contribute the most
to the growth rate of a lineage have been selected to be
relatively less variable. We now propose a method to largely

circumvent these spurious correlations, and we illustrate
it using both our simulated demographic data and data
Oon moss campion.

Method to Circumvent Spurious Negative Correlations

Because the coefficient of variation and the variance of
zero-to-one random variables have inherent limits, we
should test the hypothesis that demographic processes with
a high influence on fitness should be less variable using a
measure that computes the level of variability relative to
its maximum possible value. That is, we should ask
whether highly influential rates are less variable than they
could be given their means. For example, selection for
high longevity may have favored survival rates of larger
individuals that are close to 1 on average, with a concom-
itantly low ceiling on their coefficient of variation (fig. 1).
To ask whether selection has also favored low variability
in this high-elasticity vital rate, we should ask whether its
coefficient of variation (or variance) as a proportion of its
maximum possible value given the mean is lower than the
corresponding measure for lower-elasticity (or lower-
sensitivity) vital rates. As we explained, it makes more
sense to base a test for buffering of highly influential com-
ponents of the life history on the underlying vital rates
rather than on the matrix elements themselves.

We advocate a four-step procedure to evaluate whether
a nonrandom association exists between the coefficients
of variation and the elasticities or between the variances
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Table 2: Spearman’s rank correlations between variabilities and importance measures of vital rates estimated from

randomly constructed matrix series

Type of correlation

Survival and growth rates®

Fertilities

All fertilities with equal coefficient of variation:
Coeffecients of variation vs. elasticities
Variances vs. sensitivities

All fertilities with equal variance:

Coeffecients of variation vs. elasticities
Variances vs. sensitivities

—.0073 (—.0136, —.0010)
—.0061 (—.0124, .0001)

4.0353 x 107 (—.0059, .0067)
.0016 (—.0047, .0079)

—.0116 (—.0221, —.0010)
—.2606 (—.2711, —.2501)

2129 (2021, .2237)
—.0089 (—.0194, .0017)

Note: Mean correlations with confidence intervals that do not include 0 are in bold. See figure A2 in the online edition of the American

Naturalist for distributions of these correlations.

* Variances and coefficients of variation of these zero-to-one vital rates were relativized to their maximum values before computing

the correlations with the elasticities and sensitivities, respectively.

and sensitivities of vital rates. Step 1 is to separate the vital
rates into zero-to-one rates (e.g., survival and growth
probabilities) versus rates without an inherent limit to the
level of variability (e.g., fertilities). We will perform sep-
arate analyses for these two types of vital rates because
there is simply no fair way to compare vital rates that have
a limit to their variabilities versus those that do not. Step
2 is to compute the elasticities or sensitivities for the vital
rates, not the amalgamated matrix elements. The elasticity
(or sensitivity) of a vital rate is easily calculated as the sum
across all matrix elements of the elasticity (or sensitivity)
of that matrix element times the derivative of the matrix
element with respect to the vital rate (Caswell 2001).
Whereas the matrix element elasticities and sensitivities
are always nonnegative, vital rates that represent reversion
to smaller size classes have negative sensitivities and elas-
ticities. However, equations (1) and (2) imply that it is
the squares of these sensitivities and elasticities that affect
the long-term growth rate of a lineage. Hence, equivalent
levels of variation in vital rates whose elasticities or sen-
sitivities have the same magnitude but opposite sign are
equally important in reducing long-term fitness. There-
fore, the analysis should be based on the absolute values
of the vital rate elasticities and sensitivities. Step 3 is to
calculate the variance of each vital rate, correct it for sam-
pling variation, and use the corrected variance to compute
the coefficient of variation. For vital rates with no inherent
limit to variability, we will analyze these corrected vari-
ances and coefficients of variation directly. For zero-to-
one vital rates, we first compute the relativized variability
by dividing the corrected variance or coefficient of vari-
ation by the maximum possible value given the mean, as
specified in equations (3) or (4). Note that the relativized
variance V/V, _is simply the square of the relativized co-
efficient of variation, CV/CV,_,, so in principle, one could
use either measure to compute a rank correlation. Step 4
is to test whether there is a statistically significant rela-
tionship between the measures of variability and their in-
fluence on fitness.

To test this procedure, we first applied it to the randomly
constructed matrix series (with the exception that as we
generated the random vital rates directly rather than sim-
ulating the fates of individuals, we did not correct for
sampling variation). Relativizing the variabilities of the
survival and growth rates results in little or no bias in both
types of variability-importance correlation (table 2; fig.
A2A, A2B, A2E, A2F in the online edition of the American
Naturalist). However, when all fertilities were generated
using the same coefficient of variation, the correlations
between the coefficients of variation and the elasticities
were nearly unbiased (table 2; fig. A2D), but the variance-
sensitivity correlations were negatively biased (table 2; fig.
A2C). When all fertilities were generated using the same
variance, the variance-sensitivity correlations were unbi-
ased, but the correlations between the coefficients of var-
iation and the elasticities were positively biased (table 2;
fig. A2E, A2F). These biases apparently arose because, in
our simulations, the fertility means were positively cor-
related with size, but both the sensitivities and elasticities
were negatively correlated with size (i.e., enhancing re-
production of the smaller size classes would dispropor-
tionately increase population growth). With a fixed co-
efficient of variation, the fertility variances increased with
size to keep pace with increasing mean fertility. Therefore,
because the fertility variances and sensitivities were directly
and inversely proportional to size, respectively, they had
to be negatively correlated with one another. Conversely,
with the fertility variance fixed, the coefficients of variation
decreased with size as mean fertility increased, so the fer-
tility coefficients of variation and elasticities had to be
positively correlated with one another. Thus, rather than
representing a failure of our proposed method, the biases
in table 2 merely point to the fact that when the means,
sensitivities, and elasticities of the fertilities are all corre-
lated with size, it may be impossible for both variability
measures (the variances and coefficients of variation) to
be simultaneously independent of their relevant measures



of influence (sensitivities and elasticities, respectively). We
return to this issue in the final section of the article.

Ilustration of Method Using Demographic
Data from Silene Acaulis

Because our proposed method appears to be far less biased
than the matrix element approach, we applied it to de-
mographic data on the circumboreal cushion plant moss
campion (Silene acaulis) to see whether we could find
evidence for buffering of influential vital rates. Full details
on the study species, the field study, and the methods used
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to estimate vital rates are given by Morris and Doak (1998,
2004). Briefly, moss campion inhabits seemingly severe
arctic and alpine environments in which temperature,
moisture availability, and growing season length can vary
considerably from year to year. We quantified moss cam-
pion vital rates in five populations arrayed along an ele-
vational gradient in south-central Alaska. Populations are
identified with a two-letter site code (CC = Campion
Crest, GU = Gulch, PA = Pass, RG = Rock Glacier, and
RI = Ridge). We censused each population yearly for 6
yr, yielding five annual estimates for most vital rates for
each population. We measured plant size as the two-
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Figure 2: Relationship between the coefficients of variation of matrix elements and their elasticities, and between their variances and sensitivities,
for five Silene acaulis populations. Symbols indicate different types of matrix elements: circles, reproduction; squares, probability of stasis; diamonds,

probability of growth; triangles, probability of reversion.
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Table 3: Rank correlations between measures of variability versus influence for Silene acaulis matrix elements and vital rates

Coefficients of variation vs. elasticities

Variances vs. sensitivities

Fruit Fruit
Matrix Zero-to-one production Matrix Zero-to-one production

elements vital rates rates elements vital rates rates
Population T, df T, df T, df T, df T, df T, df
CC =511 51 —.407* 27 —1.000*** 7 426 51 —.446** 27 .683 7
GU —.635%** 59 —A474 27 —.967%** 7 494 59 =523 27 767 7
CC —.596*** 49 —.445% 27 —.452 6 —.536*** 49  —.478* 27 —.850** 6
GU —.663** 44  —.396* 27 —.190 6 .396 44  —.330% 27 .533 6
PA —.726%* 52 —.378% 27 —.517 7 —.106 52 —.324% 27 —.850%* 7

Note: Significance levels are for a one-tailed test of the hypothesis r, < 0. For zero-to-one vital rates, coefficients of variation and variances were

relativized to their maximum values prior to analysis.
*.05<P<.0l1.
** .01 < P<.001.
e P<.001.

dimensional area of a cushion and divided the populations
into 12 size classes. The zero-to-one vital rates we esti-
mated for each size class each year were the probability
of surviving, the probability of growing to any larger size
class, and the probability of reverting to any smaller size
class (plant size frequently decreases as portions of a cush-
ion die back). We also measured the annual fruit pro-
duction rates for each size class, most of which exceed 1.
We were not able to make separate yearly estimates for
several other vital rates (i.e., seed germination rate, annual
survival rate of seeds in the seed bank, number of seeds
per fruit, and probability that a seed lands in a safe site),
so we do not include these rates in our analyses. We cal-
culated the raw variance of the five estimates of each vital
rate and corrected these variances for sampling variation
using the method of White (2000). For zero-to-one vital
rates, we then used equations (3) and (4) to convert the
corrected variances into measures of relative variability.
We calculated the vital rate elasticities and sensitivities
from the mean projection matrix for each population.
For the purpose of illustration, we first present an anal-
ysis identical to that of Pfister (1998) by using the raw
coefficients of variation, elasticities, variances, and sensi-
tivities of the matrix elements, not the underlying vital
rates. In each of the five populations, the rank correlation
between the coefficients of variation and the elasticities of
the matrix elements was highly significantly <0 (fig. 2; table
3). In contrast, the rank correlations between the variances
and sensitivities of the matrix elements were significantly
negative in only a single population (recall, however, that
the matrix element variances are not corrected for sam-
pling variation). The correlations between the coefficients
of variation and the elasticities would appear to provide
strong evidence in favor of the hypothesis that the most

influential demographic processes are the most buffered
against environmental variability. However, this analysis
has not taken into account the spurious negative corre-
lation between the coefficients of variation and the elas-
ticities of matrix elements.

The correlations between the relativized coefficients of
variation and the elasticities of the zero-to-one vital rates,
which circumvent the spurious negative correlation, were
less strongly negative than were the correlations between
the coefficients of variation and elasticities of matrix el-
ements, but they too were significantly <0 in all five pop-
ulations (fig. 3; table 3). Moreover, all five of the rank
correlations between the relativized variances (now cor-
rected for sampling variation) and the sensitivities of the
zero-to-one vital rates were significantly negative (table 3).
The mean survival rates of the largest plants (class 12)
were extremely high (0.9960, 0.9982, 0.9955, 0.9876, and
0.9921 in the CC, GU, PA, RG, and RI populations, re-
spectively; see Morris and Doak 2004). Consequently, the
ranges of potential values of the variance and the coeffi-
cient of variation of this survival rate are extremely narrow
in all populations (fig. 1). Despite the low values of V.
and CV__,, the observed variances and coefficients of var-
iation were proportionally lower than for other less influ-
ential vital rates. This strongly suggests that in addition to
any selection to increase the mean survival rates of large
individuals in this long-lived perennial plant, selection has
also favored traits that reduce the year-to-year variability
in these vital rates.

Although the significant rank correlations in table 3 are
consistent with the vital rates that most strongly influence
fitness being more highly buffered against environmental
variation, we argued at the outset that it is more appro-
priate to test for an upper limit to the variability of vital
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Figure 3: Relationship between the relative variability (i.e., the coefficient of variation or variance as a fraction of the maximum value given the
mean; see eqq. [3], [4]) and the influence (elasticity or sensitivity) of zero-to-one vital rates in five Silene acaulis populations. The elasticities for
the reversion rates are negative. Symbols indicate types of vital rates: circles, survival rates; squares, growth rates; diamonds, reversion rates. Asterisks
at the upper right corner of each graph indicate the significance level of quantile regressions. One asterisk indicates P< .01 for fiftieth quantile and
P> .05 for seventieth quantile; two asterisks indicate P < .05 for both the fiftieth and seventieth quantile.

rates that declines as their influence on fitness increases.
Note that in each plot in figure 3, the data points are
concentrated below the diagonal. For example, the survival
rates have the highest elasticities, but their relative coef-
ficients of variation are always low, whereas the lower-
elasticity growth and reversion rates have relative coeffi-
cients of variation that range from high to low. To test for
a declining upper limit to variability, we used the Blossom
statistical software (Cade and Richards 2001; http://www

.mesc.usgs.gov/products/software/blossom/blossom.asp)
to perform quantile regressions of relative coefficients of
variation versus elasticities and of relative variances versus
sensitivities. Quantile regression fits a linear function be-
low which a specified proportion of the values of the de-
pendent variable are expected to lie conditional on the
value of the independent variable. One can then test
whether the slope of this function is nonzero by comparing
its fit to a function with zero slope using a likelihood ratio
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test. In the present context, a significantly negative slope
would indicate that the specified quantile of the relative
variability declines as a vital rate’s influence on fitness
increases. To perform a quantile regression, one must first
choose a quantile; tests for a nonzero slope of very high
(or very low) quantiles often have little power. We chose
to fit functions below which 50% or 70% of the values of
the dependent variable should lie. In all cases, the slopes
of these regressions were negative, significantly so for all
of the fiftieth percentile regressions (fig. 3; table Al in the
online edition of the American Naturalist). This analysis
provides strong support for the hypothesis that zero-to-
one vital rates with both a strong effect on fitness and a

high level of relative variability are underrepresented in
the data.

The number of fruit production rates we estimated was
too small to justify performing quantile regressions, so we
calculated rank correlations only. The fruit production
rates had substantially lower elasticities and sensitivities
than did the survival, growth, and reversion rates (compare
the ranges of the X-axes in figs. 3, 4). Moreover, there was
no one size class whose fruit production rate had the high-
est impact on fitness across all populations (e.g., classes
12, 12, 10, 11, and 10 had the highest elasticities for fruit
production in the CC, GU, PA, RG, and RI populations,
respectively). Despite low degrees of freedom, the rank



correlations between the coefficients of variation and the
elasticities were significantly negative in the CC and GU
populations (fig. 4; table 3). In contrast, although the var-
iances and sensitivities of the fruit production rates were
significantly negatively correlated in two populations, they
were actually positively correlated in the other three, in
direct opposition to Pfister’s (1998) hypothesis. However,
the absence of a strong relationship in vital rates with such
a weak influence on fitness is not surprising.

Summary, Caveats, and a Final Plea

Our randomly constructed series of projection matrices
demonstrate that negative correlations between the vari-
abilities and influence measures of matrix elements may
represent spurious evidence that the most influential
demographic rates have been selected to be less variable.
We can reduce such errors by analyzing zero-to-one and
nonzero-to-one vital rates separately and, for the zero-to-
one rates, by assessing whether the variabilities of highly
influential rates are disproportionately smaller than they
could be given the mean rates. By failing to account for
the upper limit to the variance or the coefficient of var-
iation of a zero-to-one vital rate (fig. 1), we risk con-
founding selection to reduce variability with selection to
increase the mean. An added benefit of analyzing vital rates
rather than matrix elements is that it allows sampling var-
iation to be properly discounted.

Two caveats should be mentioned. First, the hypothe-
sized relationship between the sensitivity or elasticity com-
puted from the mean projection matrix and the degree of
variability of a vital rate is motivated by Tuljapurkar’s
(1982) approximation (eqq. [1], [2]). Tuljapurkar (1982)
assumed that annual deviations from the mean matrix are
relatively small; if so, the deterministic sensitivities and
elasticities calculated from the mean matrix paint a rea-
sonably accurate picture of how the annual multiplication
rate will change over the entire ranges of variation in the
vital rates (and it is variation in the multiplication rate
that reduces long-term fitness). If the annual matrices de-
viate a great deal from the mean matrix and if the rela-
tionship between the annual multiplication rate and the
value of a vital rate is nonlinear, the deterministic sensi-
tivity and elasticity will no longer predict how the mul-
tiplication rate will vary as the vital rate varies. In this
case, it might be preferable to compute the sensitivities
and elasticities by stochastic simulation. For the moss cam-
pion populations we studied, the long-term multiplication
rates computed by stochastic simulation and by Tulja-
purkar’s (1982) approximation were very close, indicating
that the deterministic sensitivities and elasticities accu-
rately predict how much variation in the annual multi-
plication rate arises from variation in the vital rates. Note
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that even if the sensitivity and elasticity are computed by
simulation, the variance and coefficient of variation for
zero-to-one vital rates should still be expressed as pro-
portions of their maximum values, as we have done here.

The second caveat is that the variance versus sensitivity
correlation and the coefficient of variation versus elasticity
correlation may not always be similar in magnitude or
even in sign (table 3), particularly for vital rates such as
fertilities whose variabilities cannot be expressed in relative
terms. Moreover, for certain life histories, it may not even
be possible for both correlations to be near 0 (fig. A2C,
A2D, A2G, A2H). How to interpret such conflicting evi-
dence for demographic buffering as well as the types of
life histories for which it is likely to arise are areas for
future research.

We end with a plea to population biologists. To make
the analysis we have advocated possible, we must have
access to estimates of the underlying vital rates. We would
have liked to apply our method to the studies analyzed by
Pfister (1998), but, unfortunately, most previously pub-
lished demographic studies have presented only the amal-
gamated projection matrices (if that) and not the vital
rates. Indeed, that is the principal reason why Pfister
(1998) was forced to base her analysis on matrix elements
when she recognized that it would be preferable to use
the vital rates. We implore authors of demographic studies
to publish the vital rate estimates so that comparative stud-
ies of demographic buffering may be possible in the future.
The widespread use of electronic archives by ecology and
evolution journals should make it easy to do so.
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